Publications by authors named "Heyun Wu"

Thymidine, as a crucial precursor of anti-AIDS drugs (e.g., zidovudine and stavudine), has wide application potential in the pharmaceutical industry.

View Article and Find Full Text PDF

Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR).

View Article and Find Full Text PDF

The production phenotype improvement of industrial microbes is extremely needed and challenging. Environmental factors optimization provides insightful ideas to trigger the superior production phenotype by activating potential genetic determiners. Here, phenotype-genotype mapping was used to dissect the betaine-triggered L-arginine overproduction mechanism and mine beneficial genes for further improving production phenotype.

View Article and Find Full Text PDF

L-arginine is a value-added amino acid with promising applications in the pharmaceutical and nutraceutical industries. Further unleashing the potential of microbial cell factories to make L-arginine production more competitive remains challenging due to the sophisticated intracellular interaction networks and the insufficient knowledge of global metabolic regulation. Here, we combined multilevel rational metabolic engineering with biosensor-assisted mutagenesis screening to exploit the L-arginine production potential of Escherichia coli.

View Article and Find Full Text PDF

L-citrulline is a high-value amino acid with promising application in medicinal and food industries. Construction of highly efficient microbial cell factories for L-citrulline production is still an open issue due to complex metabolic flux distribution and L-arginine auxotrophy. In this study, we constructed a nonauxotrophic cell factory in Escherichia coli for high-titer L-citrulline production by coupling modular engineering strategies with dynamic pathway regulation.

View Article and Find Full Text PDF

Compatible solutes are key for the ability of halophilic bacteria to resist high osmotic stress. They have received wide attention from researchers for their excellent osmotic protection properties. Hydroxyectoine is a particularly important compatible solute, but its production by microbes faces several challenges, including low titer/yield, the presence of the byproduct ectoine, and the requirement of high salinity.

View Article and Find Full Text PDF

Microbial production of l-tryptophan (l-trp) has received considerable attention because of its diverse applications in food additives and pharmaceuticals. Overexpression of rate-limiting enzymes and blockage of competing pathways can effectively promote microbial production of l-trp. However, the biosynthetic process remains suboptimal due to imbalanced flux distribution between central carbon and tryptophan metabolism, presenting a major challenge to further improvement of l-trp yield.

View Article and Find Full Text PDF

Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms and considered to be a valuable targets for the treatment of various diseases, including cancer, malaria, and bacterial infections. However, MetAPs have not been reported in hard ticks (family Ixodidae), and their bioinformatics characterisation in tick's genome sequences is limited. In this study, we cloned, identified, and characterised a novel MetAP from Ixodes persulcatus, a vector for pathogens causing Lyme borreliosis and tick-borne encephalitis.

View Article and Find Full Text PDF

L-valine is an essential amino acid and an important amino acid in the food and feed industry. The relatively low titer and low fermentation yield currently limit the large-scale application of L-valine. Here, we constructed a chromosomally engineered Escherichia coli to efficiently produce L-valine.

View Article and Find Full Text PDF

l-Histidine is a functional amino acid with numerous therapeutic and ergogenic properties. It is one of the few amino acids that is not produced on a large scale by microbial fermentation due to the lack of an efficient microbial cell factory. In this study, we demonstrated the engineering of wild-type to overproduce histidine from glucose.

View Article and Find Full Text PDF

Although CRISPR/Cas9-mediated gene editing technology has developed vastly in Escherichia coli, the chromosomal integration of large DNA fragment is still challenging compared with gene deletion and small fragment integration. Moreover, to guarantee sufficient Cas9-induced double-strand breaks, it is usually necessary to design several gRNAs to select the appropriate one. Accordingly, we established a practical daily routine in the laboratory work, involving multiple-step chromosomal integration of the divided segments from a large DNA fragment.

View Article and Find Full Text PDF

Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production.

View Article and Find Full Text PDF

In this study, a uridine and acetoin co-production pathway was designed and engineered in Bacillus subtilis for the first time. A positive correlation between acetoin and uridine production was observed and investigated. By disrupting acetoin reductase/2,3-butanediol dehydrogenasegenebdhA, the acetoin and uridine yield was increased while 2,3-butanediol formation was markedly reduced.

View Article and Find Full Text PDF

In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.

View Article and Find Full Text PDF
Article Synopsis
  • Pure, TiO2-doped, and TiO2/Ag-doped WO3 films were created using evaporation techniques.
  • The electrochromic properties of these films were analyzed using Raman spectroscopy and chronoamperometry.
  • There is a negative correlation between the intensity of a specific Raman peak (at 810 cm(-1)) and the coloration efficiency, indicating that higher peak intensity leads to lower efficiency in color change.
View Article and Find Full Text PDF

The fabrication and applications of two-dimensional complex oxide heterostructures have gained great attention. However, the achievement of these materials in one-dimensional form with multiple interfaces is still elusive. Here, we report the growth of manganite CaMn(3)O(6)/CaMn(2)O(4) heterostructure nanoribbons via the use of CaMnO(3) powders as the precursor for the molten-salt process.

View Article and Find Full Text PDF

An efficient method based on the modified needle optimization technique is proposed to design high-power laser thin-film polarizers. In order to minimize the influence of the standing-wave electric field on the laser-induced damage threshold of the polarizers, a crucial optimization parameter, the maximum electric field intensity in the high-refractive-index layers, is included in the proposed merit function. The electric field distribution and optical performance obtained by the proposed method are studied.

View Article and Find Full Text PDF