Publications by authors named "Heyu Zhao"

Article Synopsis
  • Sir2-HerA is an antiphage system found in some bacteria, composed of an ATPase (HerA) and an effector (Sir2) that may have NADase activity.
  • The mechanism of how Sir2-HerA defends against phage infections involves Sir2-dependent NAD depletion, which halts the growth of infected cells, but specifics were unclear until this study.
  • Researchers discovered that SaHerA activates SaSir2’s NADase function through allosteric effects, leading to the formation of a complex that allows NAD to be cleaved by uncovering its active site.
View Article and Find Full Text PDF

The RSF complex belongs to the ISWI chromatin-remodeling family and is composed of two subunits: RSF1 (remodeling and spacing factor 1) and SNF2h (sucrose nonfermenting protein 2 homolog). The RSF complex participates in nucleosome spacing and assembly, and subsequently promotes nucleosome maturation. Although SNF2h has been extensively studied in the last few years, the structural and functional properties of the remodeler RSF1 still remain vague.

View Article and Find Full Text PDF

Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5' end sequences derived from cap-snatching in influenza virus mRNA.

View Article and Find Full Text PDF

Sphingolipids (SPLs) are bioactive lipids that manifest structural diversity and complexity in eukaryotes. However, the distributions and functions of these molecules in mammalian tissues/cells have not been systematically investigated. Herein, we integrated shotgun lipidomics with targeted LC-MRM/MS approach to comprehensively analyze SPL species in various biological samples with high accuracy.

View Article and Find Full Text PDF
Article Synopsis
  • Plant innate immunity can fight various evolving diseases, and its flexibility may be enhanced by RNA processing.
  • The protein CPR5 is identified as a negative regulator of this immunity and plays roles in both nuclear pore complexes and RNA processing complexes.
  • CPR5 is an RNA-binding protein that interacts with specific RNAs linked to immune response pathways, highlighting its role in connecting RNA processing and plant defense mechanisms.
View Article and Find Full Text PDF

Background: Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD.

View Article and Find Full Text PDF

Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images.

View Article and Find Full Text PDF

Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected.

View Article and Find Full Text PDF

Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in the folate cycle, catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. Methionine serves as the precursor of the active methyl donor S-adenosylmethionine, which provides methyl groups for many biological methylations. It has been reported that MTHFR is highly phosphorylated under unperturbed conditions and T34 is the priming phosphorylation site.

View Article and Find Full Text PDF