To simplify the cross-calibration process and improve calibration frequency and accuracy, this paper proposes a cross-calibration method for the multispectral remote sensor Multi-Spectral Instrument (MSI) carried by Sentinel-2B using the hyperspectral remote sensor, that is, the satellite calibration spectrometer (SCS) carried by Hai Yang (HY)-1C, as the reference sensor and establishes the calibration process. Precise spectral response matching between SCS and MSI spectral channels is performed by the interpolation and iteration of hyperspectral data to eliminate the difference in band settings and significantly improve the accuracy of cross-calibration coefficients. The SNO-x inherited from the simultaneous nadir overpass (SNO) method is used as a prediction method to carry out cross-calibration imaging in mid- and low-latitude regions, which improves the cross-calibration frequency and broadens the dynamic range of calibration.
View Article and Find Full Text PDFTo monitor the spectral position drift, expansion and contraction of the full width at half maximum (FWHM) of the satellite calibration spectrometer (SCS) of the HY-1C satellite during on-orbit operation, an onboard spectral calibration method based on a wavelength diffuser is proposed in this paper. This method uses the wavelength diffuser reflectance measured prelaunch as the standard spectrum, convolves it with the spectral response function of the SCS to obtain a reference spectrum, uses the measured data of the onboard SCS as the measured spectrum, and obtains the spectral drift and variation of the FWHM through spectral line matching. Generally, the spectral response function of a hyperspectral remote sensor follows a Gaussian model, and so does that of the SCS.
View Article and Find Full Text PDFA partial aperture onboard calibration method can solve the onboard calibration problems of some large aperture remote sensors, which is of great significance for the development trend of increasingly large apertures in optical remote sensors. In this paper, the solar diffuser reflectance degradation monitor (SDRDM) in the onboard calibration assembly (CA) of the FengYun-4 (FY-4) advanced geostationary radiance imager (AGRI) was used as the reference radiometer. It was designed for measuring the partial aperture factor (PAF) for the AGRI onboard calibration.
View Article and Find Full Text PDFAs the reference radiometric calibration standard of sensors on the Haiyang-1C (HY-1C) satellite platform, the satellite calibration spectrometer (SCS) is equipped with an onboard calibration system composed of double solar diffusers and an erbium-doped diffuser to monitor the postlaunch radiometric response change. Herein, through onboard calibration data analysis, the calibration diffuser performance remains stable without degradation, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra is adopted as a reference to repeatedly verify onboard radiometric calibration results by selecting different dates and reflectance scenes. The SCS equivalent reflectance is obtained by combining the mean digital number (DN) of the SCS crossing area image with the radiometric calibration coefficient.
View Article and Find Full Text PDF