Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow.
View Article and Find Full Text PDFNitrogen (N) addition can greatly influence soil inorganic phosphorus (Pi) and organic phosphorus (Po) transformations. However, whether and how the N compound forms may differentially affect the soil P fractions remain unclear. Here, we investigated the responses of soil Pi (labile Pi, moderately-occluded Pi, and recalcitrant Pi) and Po fractions (labile Po and stable Po) to varying addition rates of three N compounds ((NH)SO, NHNO, and urea) in a meadow steppe in northern China.
View Article and Find Full Text PDFSoil acidification induced by reactive nitrogen (N) inputs is a major environmental issue in grasslands, as it lowers the acid neutralizing capacity (ANC). The specific impacts of different N compound forms on ANC remain unclear. Grassland management practices like mowing and grazing can remove a considerable amount of soil N and other nutrients, potentially mitigating soil acidification by removing N from the ecosystem or aggravating it by removing base cations.
View Article and Find Full Text PDFDrought and nitrogen enrichment could profoundly affect the productivity of semiarid ecosystems. However, how ecosystem productivity will respond to different drought scenarios, especially with a concurrent increase in nitrogen availability, is still poorly understood. Using data from a 4-year field experiment conducted in a semiarid temperate steppe, we explored the responses of aboveground net primary productivity (ANPP) to different drought scenarios and nitrogen addition, and the underlying mechanisms linking soil properties, plant species richness, functional diversity (community-weighted means of plant traits, functional dispersion) and phylogenetic diversity (net relatedness index) to ANPP.
View Article and Find Full Text PDFIncreased atmospheric nitrogen (N) deposition affects biodiversity in terrestrial ecosystems. However, we do not know whether the effects of N on above-ground plant β-diversity are coupled with changes occurring in the soil seed bank. We conducted a long-term N-addition experiment in a typical steppe and found that above-ground β-diversity increased and then decreased with increasing N addition, whereas below-ground β-diversity decreased linearly.
View Article and Find Full Text PDFPhosphorus (P) is a limiting nutrient second only to nitrogen (N) in the drylands of the world. Most previous studies have focused on N transformation processes in grassland ecosystems, particularly under artificial fertilization with N and atmospheric N deposition. However, P cycling processes under natural conditions and when P is applied as an inorganic P fertilizer have been understudied.
View Article and Find Full Text PDFNitrogen enrichment and land use are known to influence various ecosystems, but how these anthropogenic changes influence community and ecosystem responses to disturbance remains poorly understood. Here we investigated the effects of increased nitrogen input and mowing on the resistance and recovery of temperate semiarid grassland experiencing a three-year drought. Nitrogen addition increased grassland biomass recovery but decreased structural recovery after drought, whereas annual mowing increased grassland biomass recovery and structural recovery but reduced structural resistance to drought.
View Article and Find Full Text PDFTrait-based approaches have been widely applied to uncover the mechanisms determining community assembly and biodiversity-ecosystem functioning relationships. However, they have rarely been used in forest-steppe ecotones. These ecosystems are extremely sensitive to disturbances due to their relatively complex ecosystem structures, functionings and processes.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
September 2022
This study aimed to examine the responses of persistent soil seed bank to future precipitation reduction of global climate change in the forest-steppe ecotone of Hulunbuir. Samples of soil seed bank were collected from 0-10 cm soil layer along a precipitation gradient. We examined the density, species composition, diversity of seed bank and their relationship with vegetation.
View Article and Find Full Text PDFWith six var. plantations (Huinan, Xifeng, Fujia, Zhanggutai, Naiman and Wulanaodu) along an aridity gradient in the Horqin sandy land, we examined the changes in non-structural carbohydrates (NSCs) and nitrogen (N) contents of current and one-year-old needles and twigs, to explore the carbon supply and demand status as well as the nutrient accumulation strategies of var. under drought.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2022
Reasonable nutrient and water management is effective ways to improve productivity and biodiversity of degraded grasslands. However, little is known about the effects of nutrient and water addition on soil inorganic phosphorus (P) fractions in old-field grasslands. Based on a field experiment with nutrient addition (N: 10 g·m·a, P: 10 g·m·a ) and water addition (180 mm water irrigated during plant growing season) in Duolun County, Inner Mongolia in 2005, we examined the changes of inorganic P fractions and Olsen-P contents in the topsoil (0-10 cm).
View Article and Find Full Text PDFPhosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (P ) and organic matter (P ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands.
View Article and Find Full Text PDFBackground: Recently, the number of nontuberculous mycobacterium (NTM) infections caused by iatrogenic procedures, especially rapid NTM skin infections, has been increasing. Due to the nonspecific clinical manifestations and nonstandard treatment guidelines, these infections are often misdiagnosed and challenging to treat.
Methods: In this study, eight patients had NTM skin infections caused by iatrogenic procedures, and were diagnosed by bacterial culture and flight mass spectrometry tests.
Nitrogen (N) addition and mowing can significantly influence micronutrient cycling in grassland ecosystems. It remains largely unknown about how different forms of added N affect micronutrient status in plant-soil systems. We examined the effects of different N compounds of (NH)SO, NHNO, and urea with and without mowing on micronutrient Fe, Mn, Cu, and Zn in soil-plant systems in a meadow steppe.
View Article and Find Full Text PDFNatural abundance of carbon (C) and nitrogen (N) stable isotope ratios (δ C and δ N) has been used to indicate ecosystem C and N status and cycling; however, use of this approach to infer plant and microbial N preference under projected ecosystem N enrichment is limited. Here, we investigated natural abundance δ C and δ N of five dominant plant species, and soil δ N of microbial biomass and available N forms under N addition in a meadow steppe. Additional N, applied as urea, led to decreases in δ N of soil NO (δ N , from 3.
View Article and Find Full Text PDFAnthropogenic nitrogen (N) enrichment can significantly alter soil chemical properties in various ecosystems. Previous manipulative N experiments mainly focused on the intensity of N addition on soil properties by changing N input rates. It remains unclear, however, whether frequency of N addition can affect soil chemical properties.
View Article and Find Full Text PDFA 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated.
View Article and Find Full Text PDFAim: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved.
Methods: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance.
Multidrug resistance (MDR), a phenomenon that often occurs with drug treatment and is characterized by relapse or attenuation of drug efficacy, is almost unavoidable in colorectal cancer (CRC) patients receiving 5-fluorouracil (5-FU)-based chemotherapy. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression. Our previous study has identified miR-139-5p as a potential tumor suppressor in CRC, but its role in chemoresistance of CRC has not been elucidated.
View Article and Find Full Text PDFRecent preliminary studies reported the in vitro tumor-promoting effects of long non-coding RNA urothelial carcinoma associated 1 (UCA1) in colorectal cancer (CRC). However, the in vivo functions and molecular mechanism of UCA1 in CRC remain unclear. Therefore, we investigated the detailed role and mechanism of UCA1 in CRC.
View Article and Find Full Text PDFThe development of colorectal cancers (CRC) is accompanied with the acquisition and maintenance of specific genomic alterations. These alterations can emerge in premalignant adenomas and faithfully maintained in highly advanced tumors. miRNAs are a class of small non-coding RNAs that are frequently deregulated in human cancers and negatively regulate a wide variety of protein coding genes.
View Article and Find Full Text PDF