Publications by authors named "Heyan Zhao"

Background: Fluoxetine is widely used as a first-line antidepressant. However, the molecular mechanisms for its antidepressant effects are still not fully understood. Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis is a core pathogenic mechanism contributing to depression, and fluoxetine treatment prevents this dysfunction.

View Article and Find Full Text PDF

Background: Emerging data has demonstrated that in mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Thus, it is possible that SorCS2 plays a role in the pathophysiology of depression by regulating the BDNF-TrkB system.

Methods: In the present study, SorCS2 expression in different brain regions [hippocampus, medial prefrontal cortex (mPFC), hypothalamus, amygdala, ventral tegmental area (VTA), and nucleus accumbens (NAc)] was thoroughly investigated in the chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression.

View Article and Find Full Text PDF

Background And Aims: The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation.

Methods: For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.

View Article and Find Full Text PDF

This study aims to discuss the role of exosomes KCNQ10T1 derived from bone marrow mesenchymal stem cells (BMMSCs) in sepsis and to further investigate its potential molecular mechanisms. Exosomes extracted from BMMSCs are identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot. Fluorescence labeling is applied to detect the internalization of exosomes in receptors.

View Article and Find Full Text PDF

Although ribosomal RNA processing 15 Homolog (RRP15) has been implicated in the occurrence of various cancers and is considered a potential target for cancer treatment, its significance in colon cancer (CC) is unclear. Thus, this present study aims to determine RRP15 expression and biological function in CC. The results demonstrated a strong expression of RRP15 in CC compared to normal colon specimens, which was correlated with poorer overall survival (OS) and disease-free survival (DFS) of the patients.

View Article and Find Full Text PDF

In the adult mammalian brain, neural stem cells (NSCs) are the precursor cells of neurons that contribute to nervous system development, regeneration, and repair. MicroRNAs (miRNAs) are small non-coding RNAs that regulate cell fate determination and differentiation by negatively regulating gene expression. Here, we identified a post-transcriptional mechanism, centred around miR-130a-3p that regulated NSC differentiation.

View Article and Find Full Text PDF

Neural stem cells (NSCs) persist in the dentate gyrus of the hippocampus into adulthood and are essential for both neurogenesis and neural circuit integration. Exosomes have also been shown to play vital roles in regulating biological processes of receptor cells as a medium for cell-to-cell communication signaling molecules. The precise molecular mechanisms of exosome-mediated signaling, however, remain largely unknown.

View Article and Find Full Text PDF

Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required.

View Article and Find Full Text PDF

The regulation of adult neural stem cells (NSCs) is critical for lifelong neurogenesis. MicroRNAs (miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, miR-103-3p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells.

View Article and Find Full Text PDF

MicroRNA-33-3p (miR-33-3p) has been widely investigated for its roles in lipid metabolism and mitochondrial function; however, there are few studies on miR-33-3p in the context of neurological diseases. In this study, we investigated the functional role of miR-33-3p in rat pheochromocytoma PC12 cells. A miR-33-3p mimic was transduced into PC12 cells, and its effects on proliferation, apoptosis, and differentiation were studied using the MTS assay, EdU labeling, flow cytometry, qRT-PCR, western blot, ELISA, and immunofluorescence.

View Article and Find Full Text PDF

Glioblastoma multiform (GBM) is the most common and malignant primary brain cancer in adults, and thus, novel potential therapeutic targets for diagnosis and treatment are urgently needed. Circular RNAs (circRNAs) are a class of widespread and diverse endogenous RNAs that have been suggested as potential critical mediators during progression of various tumors. In this study, we investigated the involvement of circHECTD1 in GBM progression.

View Article and Find Full Text PDF

Background: In the brain of adult mammals, neural stem cells persist in the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus, which are specialized niches with proliferative capacity. Most neural stem cells are in a quiescent state, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to produce new neurons, so neural stem cells are considered to be a potential source for cell replacement therapy of many nervous system diseases. We characterized the expression of Ndel1 during the differentiation of neural stem cells induced by hippocampus exosomes, and assessed the effect of Ndel1 on neural stem cells differentiation.

View Article and Find Full Text PDF

Damage to the cholinergic system in central nervous system injuries such as traumatic brain injury (TBI) and neurodegenerative diseases leads to impaired learning and cognition. Neural stem cells (NSCs) have self-renewal capacity and multi-directional differentiation potential and considered the best source of cells for cell replacement therapy. However, how to promote the differentiation of NSCs into neurons is a major challenge in current research.

View Article and Find Full Text PDF

Glioma is the most common primary brain tumor and the most malignant type of glioma is glioblastoma with the character of high mortality, high recurrence rate and poor prognosis. MicroRNAs act as an important component in glioma development and thus may be a potential target for the treatment of glioma. There were some researches indicated that miR-210-3p played a role in glioma development, but if it can inhibit glioma growth, as well as the underlying mechanism, is still uncertain.

View Article and Find Full Text PDF

Valproate (VPA), an effective clinical approved anti-epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high-throughput microarray.

View Article and Find Full Text PDF

Background: Increasing evidence has revealed that long non-coding RNAs (lncRNAs) play a pivotal role in the development of nervous system. Our previous studies have demonstrated that enhanced cholinergic neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) after cholinergic denervation, which is closely associated with the core transcription factor Lhx8. This study aimed to identify novel lncRNAs in a denervated hippocampal niche, which may affect cholinergic neurogenesis, and to explore the molecular mechanisms underlying cholinergic neurogenesis.

View Article and Find Full Text PDF

Growth arrest-specific 5 (GAS5) is an anti-oncogene that has been extensively studied in tumors. However, research on GAS5 in the context of nervous system disease is rare at present. This study aimed to investigate the role of the long non-coding RNA GAS5 in rat pheochromocytoma cells (PC12 cells).

View Article and Find Full Text PDF

The present study aimed to investigate the effect of metastasis suppressor 1 (MTSS1) on the proliferation, migration and invasion of human H1299 non-small cell lung cancer cells and its clinical significance in non‑small cell lung cancer. The target gene MTSS1-overexpressing lentivirus (LV-MTSS1) was transfected into H1299 cells and expression of MTSS1 was detected at the mRNA and protein levels. Cell Counting Kit-8, wound healing and Transwell assays revealed that the migration and invasion activities were significantly suppressed by MTSS1, but that it had no effect on cell proliferation.

View Article and Find Full Text PDF

Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear.

View Article and Find Full Text PDF

Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro.

View Article and Find Full Text PDF

Neural stem cells (NSCs) tranplantation has great potential for the treatment of neurodegenerative disease such as Parkinson's disease (PD). However, the usage of NSCs is limited because the differentiation of NSCs into specific dopaminergic neurons has proven difficult. We have recently demonstrated that transgenic expression of Nurr1 could induce the differentiation of NSCs into tyrosine hydroxylase (TH) immunoreactive dopaminergic neurons, and forced co-expression of Nurr1 with Brn4 caused a dramatic increase in morphological and phenotypical maturity of these neurons.

View Article and Find Full Text PDF

We isolated and expanded fibroblast-like cells from the Wharton's jelly of human umbilical cord successfully. Immunocytochemistry showed that they were positive for several markers of mesenchymal stem cells (CD73, CD90, and CD105) and integrin markers (CD29 and CD44), but negative for a hematopoietic cell maker (CD45) and an endothelial cell marker (CD31). Their differentiation into osteocytes and adipocytes under specific conditions indicated that they had multi-lineage differentiation potential.

View Article and Find Full Text PDF

Mash1, a member of the basic helix-loop-helix (bHLH) transcription factor family, has previously been considered essential for neuronal differentiation and specification in the nervous system. In this study, we investigated the expression of Mash1 in the hippocampus after fimbria-fornix (FF) transection. Western blot showed that protein of Mash1 increased significantly and peaked at day 7 after FF transection.

View Article and Find Full Text PDF

To explore the effects of deafferented hippocampal extracts on the differentiation of radial glial cells (RGCs), hippocampal RGCs of postnatal day 1 rats were isolated under adherent conditions in vitro. Protein extracts of deafferented hippocampus were prepared from adult rats following fimbria fornix lesion. RGCs were exposed to extracts of deafferented or normal hippocampus and the type and extent of proliferation and differentiation were evaluated.

View Article and Find Full Text PDF