Acute myeloid leukemia (AML) is a hematologic malignancy with a high recurrence rate and poor long-term prognosis. DNA excision repair systems, such as base excision repair (BER) and nucleotide excision repair (NER), play a major role in maintaining genomic stability and integrity. Further intensive investigations are necessary to uncover additional AML prognosis loci.
View Article and Find Full Text PDFMost forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression.
View Article and Find Full Text PDFGene mutations are a pivotal component of the pathogenesis of MDS, and they hold profound prognostic significance for predicting treatment responses and survival outcomes. However, reports about mutation patterns in Chinese MDS patients are limited. In this study, we analyzed the genetic mutation of 23 genes in 231 patients with MDS using next-generation sequencing (NGS) technology, and explored the characteristics of gene mutations in MDS patients and their associations with clinical outcomes, survival, and transformation outcomes.
View Article and Find Full Text PDFMitochondria are energy-generated organelles and take an important part in biological metabolism. Mitochondria could be transferred between cells, which serves as a new intercellular communication. Mitochondrial transfer improves mitochondrial defects, restores the biological functions of recipient cells, and maintains the high metabolic requirements of tumor cells as well as drug resistance.
View Article and Find Full Text PDF