Background: The effectiveness of adipose-derived stem cells (ADSCs) in therapy diminishes with age. It has been reported that transcription factors (TFs) play a crucial role in the aging and functionality of stem cells. Nevertheless, there is limited understanding regarding the involvement of TFs in the aging mechanism of ADSCs.
View Article and Find Full Text PDFAdipose stem cell (ASC)-based therapies provide an encouraging option for tissue repair and regeneration. However, the function of these cells declines with aging, which limits their clinical transformation. Recent studies have outlined the involvement of long non-coding RNAs in stem cell aging.
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) have been widely applied in translational and regenerative medicine. During aging, there is a recognized functional decline in ADSCs, which compromises their therapeutic effectiveness. Currently, the mechanisms of aging-induced stem cell dysfunction remain unclear, hence there is a need to elucidate these mechanisms and propose strategies for reversing this functional impairment.
View Article and Find Full Text PDFNon-healing wound, with limited treatment options, remains a prevalent complication of diabetes mellitus. The underlying causes wherein include oxidative stress injury, bacterial infection, cellular dysfunction, and persistent inflammation. Acellular Dermal Matrix (ADM), a wound dressing composed of natural extracellular matrix and abundant bioactive factors, has been successfully developed to treat various wounds, including burns and diabetic ulcers.
View Article and Find Full Text PDFBackground: The functional impairment of adipose stem cells (ASCs) during aging limits their clinical transformation. Studies have shown that extrachromosomal circular DNAs (eccDNAs) are associated with tumor progression and cell aging, but the roles of eccDNAs in ASCs remain unknown.
Method: We conducted Circle sequencing (Circle-seq) to identify eccDNAs in ASCs isolated from young and old donors.
Background: Long non-coding RNAs (LncRNAs) have been extensively studied to play essential roles in tumor progression. However, more in-depth studies are waiting to be solved on how lncRNAs regulate the progression of hepatocellular carcinoma (HCC).
Methods: Different expression levels of lncRNAs in HCC cells were compared by analysis of Gene Expression Omnibus and The Cancer Genome Atlas databases.
Background: Senescent adipose-derived stem cells (ASCs) exhibit reduced therapeutic efficacy during wound healing. Transcriptional regulation factors including long noncoding RNAs (lncRNAs) reportedly have essential roles in stem cell aging. However, the mechanisms of which lncRNAs influence mesenchymal stem cell aging and how it works need further investigation.
View Article and Find Full Text PDFCircular RNAs (circRNAs) play a vital role in diabetic peripheral neuropathy. However, their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood. Here, we performed protein profiling and circRNA sequencing of sural nerves in patients with diabetic peripheral neuropathy and controls.
View Article and Find Full Text PDFBackground: Research has indicated that the emergence of Schwann cells around premalignant lesions of colon cancer might be an early indicator promoting the onset of tumorigenesis. The present study explored the communication between colon cancer cells and Schwann cells.
Methods: Immunofluorescence analyses were conducted to examine the differential distribution of Schwann cells within colon cancer tissues and normal colon tissues.
Oxidative damage is a critical cause of diabetic wounds. Exosomes from various stem cells could promote wound repair. Here, we investigated the potential mechanism by which exosomes from adipose-derived stem cells (ADSC-EXOs) promote diabetic wound healing through the modulation of oxidative stress.
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) can differentiate into Schwann cells (SCs) at the site of nerve injury, where Schwann cell-derived exosomes (SC-Exos) are suspected to exert an induction effect. Our study aimed to induce the differentiation of ADSCs using SC-Exos and to investigate the mechanisms involved through miRNA sequencing. Subcutaneous fat was used to extract ADSCs.
View Article and Find Full Text PDFBackground: Researches indicated the process of Endothelial-Mesenchymal-Transition (EndMT) of vascular endothelial cells (ECs) was critically involved in the progression of tumor. ECs demonstrated functional and phenotypic heterogeneity when located under different microenvironments. The extracellular pH of tumor tissues was acidic compared to that of normal tissues.
View Article and Find Full Text PDFHandchir Mikrochir Plast Chir
August 2021
Background: Microsurgical reconstruction of extremity defects with free flaps has been carried out for many years. The aim of this retrospective study is to characterize free flap surgery on children of 1 to 7 years old by evaluating a series of 20 cases of free flap surgeries that have been performed in pediatric patients.
Methods: From February 2014 to January 2018, 20 patients, 10 boys and 10 girls aged from 1 to 7 years (average, 4.
As one of the most common pathological processes in the clinic, wound healing has always been an important topic in medical research. Improving the wound healing environment, shortening the healing time and promoting fast and effective wound healing are hot and challenging issues in clinical practice. The nuclear factor-erythroid-related factor 2 (NFE2L2 or NRF2) signalling pathway reduces oxidative damage and participates in the regulation of anti-oxidative gene expression in the process of oxidative stress and thus improves the cell protection.
View Article and Find Full Text PDFAim: We aim to study the anti-apoptotic effect of microRNA-21-5p (miR-21-5p) in the oxidative stress-induced apoptosis of Schwann cells and the relevant mechanism in this research, laying a foundation for the treatment of peripheral neuropathy (PNP).
Methods And Materials: The oxidative stress model was established by using hydrogen peroxide (HO). ROS level were detected by DCFH-DA (2,7-Dichlorodi-hydrofluorescein diacetate).
Background: Diabetes mellitus is a worldwide disease with high incidence. Diabetic peripheral neuropathy (DPN) is one of the most common but often ignored complications of diabetes mellitus that cause numbness and pain, even paralysis. Recent studies demonstrate that Schwann cells (SCs) in the peripheral nervous system play an essential role in the pathogenesis of DPN.
View Article and Find Full Text PDFBackground Aims: Tissue engineering technology is a promising therapeutic strategy in peripheral nerve injury. Schwann cells (SCs) are deemed to be a vital component of cell-based nerve regeneration therapies. Many methods for producing SC-like cells derived from adipose-derived stromal cells (ADSCs) have been explored, but their phenotypic and functional characteristics remain unsatisfactory.
View Article and Find Full Text PDFHuman adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo.
View Article and Find Full Text PDFBackground: Human adipose stem cells (ASCs) have emerged as a promising treatment paradigm for skin wounds. Recent works demonstrate that the therapeutic effect of stem cells is partially mediated by extracellular vesicles, which comprise exosomes and microvesicles. In this study, we investigate the regenerative effects of isolated microvesicles from ASCs and evaluate the mechanisms how ASC microvesicles promote wound healing.
View Article and Find Full Text PDF