The effects of drawing parameters and annealing process on the properties and microstructure of single crystal copper wire are studied using a wire-drawing machine, heat-treatment equipment, microcomputer-controlled electronic universal tester, resistance tester, and scanning electron microscope. The results show that, after drawing the single-crystal copper wire with a single-pass deformation of 14%, the grains elongate along the tensile direction, tensile strength increases from 500.83 MPa to 615.
View Article and Find Full Text PDFMicromachines (Basel)
August 2023
The effects of various drawing parameters and annealing processes on the structure and properties of Cu-Ag wires, containing 1 wt% silver, were investigated using specialized equipment including fine wire-drawing machines, very fine wire-drawing machines, heat treatment equipment, tensile testing machines, microcomputer-controlled electronic universal testers, resistance testers, and scanning electron microscopes. The results revealed that continuous drawing of Cu-1%Ag alloy wires led to elongation of the grains, resulting in a uniform and tightly fibrous microstructure. Moreover, the tensile strength of the alloy wire increased from 670 MPa to 783.
View Article and Find Full Text PDFMicromachines (Basel)
July 2023
Wire-bonding technology is the most commonly used chip interconnection technology in microelectronic packaging. Metal bonding wire is the key material for wire bonding and plays an important role in the reliability of electronic devices. In recent years, palladium-plated copper (PdCu) bonding wire has been widely used because of its low cost, good electrical and thermal conductivity, the fact that it is not easy to oxidize, and its high reliability.
View Article and Find Full Text PDF