Proteolysis is essential for the control of metabolic pathways and the cell cycle. Bacterial caseinolytic proteases (Clp) use peptidase components, such as ClpP, to degrade defective substrate proteins and to regulate cellular levels of stress-response proteins. To ensure selective degradation, access to the proteolytic chamber of the double-ring ClpP tetradecamer is controlled by a critical gating mechanism of the two axial pores.
View Article and Find Full Text PDFEssential cellular processes of microtubule disassembly and protein degradation, which span lengths from tens of μm to nm, are mediated by specialized molecular machines with similar hexameric structure and function. Our molecular simulations at atomistic and coarse-grained scales show that both the microtubule-severing protein spastin and the caseinolytic protease ClpY, accomplish spectacular unfolding of their diverse substrates, a microtubule lattice and dihydrofolate reductase (DHFR), by taking advantage of mechanical anisotropy in these proteins. Unfolding of wild-type DHFR requires disruption of mechanically strong β-sheet interfaces near each terminal, which yields branched pathways associated with unzipping along soft directions and shearing along strong directions.
View Article and Find Full Text PDFWe use Langevin dynamics simulations to model, at an atomistic resolution, how various natively knotted proteins are unfolded in repeated allosteric translocating cycles of the ClpY ATPase. We consider proteins representative of different topologies, from the simplest knot (trefoil 3), to the three-twist 5 knot, to the most complex stevedore, 6, knot. We harness the atomistic detail of the simulations to address aspects that have so far remained largely unexplored, such as sequence-dependent effects on the ruggedness of the landscape traversed during knot sliding.
View Article and Find Full Text PDF