Publications by authors named "Heval Atas"

Purpose: Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine.

Methods: In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing.

View Article and Find Full Text PDF

Predictive approaches such as virtual screening have been used in drug discovery with the objective of reducing developmental time and costs. Current machine learning and network-based approaches have issues related to generalization, usability, or model interpretability, especially due to the complexity of target proteins' structure/function, and bias in system training datasets. Here, we propose a new method "DRUIDom" (DRUg Interacting Domain prediction) to identify bio-interactions between drug candidate compounds and targets by utilizing the domain modularity of proteins, to overcome problems associated with current approaches.

View Article and Find Full Text PDF

Systemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource.

View Article and Find Full Text PDF

The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e.

View Article and Find Full Text PDF

Proteins use their functional regions to exploit various activities, including binding to other proteins, nucleic acids, or drugs. Functional sites of the proteins have a tendency to be more conserved than the rest of the protein surface. Therefore, detection of the conserved residues using phylogenetic analysis is a general approach to predict functionally critical residues.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is a malignant neoplasm of bone marrow plasma B cells with high morbidity. Clofazimine (CLF) is an FDA-approved leprostatic, anti-tuberculosis, and anti-inflammatory drug that was previously shown to have growth suppression effect on various cancer types such as hepatocellular, lung, cervix, esophageal, colon, and breast cancer as well as melanoma, neuroblastoma, and leukemia. The objective of this study was to evaluate the anticancer effect and mechanism of CLF on U266 MM cell line.

View Article and Find Full Text PDF