Publications by authors named "Heusschen R"

Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins.

View Article and Find Full Text PDF

Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2 mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro.

View Article and Find Full Text PDF

Multiple myeloma osteolytic disease is caused by an uncoupled bone-remodelling process with an increased osteoclast activity. Disease development relies on interactions between myeloma cells and bone marrow stromal cells. Recent findings suggest a role for glycan-binding proteins in myeloma microenvironment.

View Article and Find Full Text PDF

Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment wherein communication through different factors including extracellular vesicles takes place. This cross-talk not only leads to drug resistance but also to the development of osteolysis. Targeting vesicle secretion could therefore simultaneously ameliorate drug response and bone disease.

View Article and Find Full Text PDF

Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only cause morbidity but also negatively impact survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission.

View Article and Find Full Text PDF

Galectin-9 consists of two peptide-linked carbohydrate recognition domains (CRDs), but alternative splicing and proteolytic processing can give rise to multiple galectin-9 isoforms. Some of these consist of a single CRD and can exert different functions in cell biology. Here, we explored the role of these galectin-9 isoforms in endothelial cell function and angiogenesis.

View Article and Find Full Text PDF

Solitary plasmacytoma is an infrequent form of plasma cell dyscrasia that presents as a single mass of monoclonal plasma cells, located either extramedullary or intraosseous. In some patients, a bone marrow aspiration can detect a low monoclonal plasma cell infiltration which indicates a high risk of early progression to an overt myeloma disease. Before treatment initiation, whole body positron emission tomography-computed tomography or magnetic resonance imaging should be performed to exclude the presence of additional malignant lesions.

View Article and Find Full Text PDF

Treatment of high-risk patients is a major challenge in multiple myeloma. This is especially true for patients assigned to the gene expression profiling-defined proliferation subgroup. Although recent efforts have identified some key players of proliferative myeloma, genetic interactions and players that can be targeted with clinically effective drugs have to be identified in order to overcome the poor prognosis of these patients.

View Article and Find Full Text PDF

Dysregulated expression of S100 protein family members is associated with cancer proliferation, invasion, angiogenesis, and inflammation. S100A9 induces myeloid-derived suppressor cell (MDSC) accumulation and activity. MDSCs, immunosuppressive cells that contribute to tumor immune escape, are the main producers of S100A9.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma bone disease is a serious condition that leads to significant health issues and continues affecting patients even after remission.
  • It arises from an imbalance in bone remodeling, with increased activity of cells that break down bone (osteoclasts) and reduced activity of cells that build bone (osteoblasts), resulting in bone loss.
  • Although bisphosphonates are the standard treatment, there is a need for new therapies, and research is progressing on understanding the disease's molecular mechanisms to identify potential new treatments, some of which are showing positive results in early trials.
View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell malignancy characterized by the accumulation of tumor cells in the bone marrow (BM) and is associated with immunosuppression, angiogenesis and osteolysis. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature, immunosuppressive myeloid cells that promote tumor progression through different mechanisms.In this work, we studied the contribution of MDSC subsets to different disease-promoting aspects in MM.

View Article and Find Full Text PDF

Multiple myeloma (MM)-associated osteolytic bone disease is a major cause of morbidity and mortality in MM patients and the development of new therapeutic strategies is of great interest. The proto-oncogene SRC is an attractive target for such a strategy. In the current study, we investigated the effect of treatment with the SRC inhibitor saracatinib (AZD0530) on osteoclast and osteoblast differentiation and function, and on the development of MM and its associated bone disease in the 5TGM.

View Article and Find Full Text PDF

Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder and bridges monoclonal gammopathy of undetermined significance to multiple myeloma (MM), based on higher levels of circulating monoclonal immunoglobulin and bone marrow plasmocytosis without end-organ damage. Until a Spanish study reported fewer MM-related events and better overall survival among patients with high-risk SMM treated with lenalidomide and dexamethasone, prior studies had failed to show improved survival with earlier intervention, although a reduction in skeletal-related events (without any impact on disease progression) has been described with bisphosphonate use. Risk factors have now been defined, and a subset of ultra-high-risk patients have been reclassified by the International Myeloma Working Group as MM, and thus will require optimal MM treatment, based on biomarkers that identify patients with a >80% risk of progression.

View Article and Find Full Text PDF

Galectins are a family of proteins that bind to specific glycans thereby deciphering the information captured within the glycome. In the last two decades, several galectin family members have emerged as versatile modulators of tumor progression. This has initiated the development and preclinical assessment of galectin-targeting compounds.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is a malignant plasma cell disorder with poor long-term survival and high recurrence rates. Despite evidence of graft-versus-myeloma (GvM) effects, the use of allogeneic hematopoietic stem cell transplantation (allo-SCT) remains controversial in MM. In the current study, we investigated the anti-myeloma effects of allo-SCT from B10.

View Article and Find Full Text PDF

Approximately 30-40% of the patients with early stage non-small cell lung cancer (NSCLC) will present with recurrent disease within two years of resection. Here, we performed extensive galectin expression profiling in a retrospective study using frozen and paraffin embedded tumor tissues from 87 stage I/II NSCLC patients. Our data show that galectin mRNA expression in NSCLC is confined to galectin-1, -3, -4, -7, -8, and -9.

View Article and Find Full Text PDF

The majority of multiple myeloma patients relapse with the current treatment strategies, raising the need for alternative therapeutic approaches. Cellular immunotherapy is a rapidly evolving field and currently being translated into clinical trials with encouraging results in several cancer types, including multiple myeloma. Murine multiple myeloma models are of critical importance for the development and refinement of cellular immunotherapy.

View Article and Find Full Text PDF

Monoclonal gammopathies of undetermined significance (MGUS) are frequently diagnosed in the global population. Because of its possible transformation into a hematological malignancy, the identification of a MGUS requires a regular and generally long follow-up. However, this risk of transformation differs between the individuals and different laboratory criteria have been identified as predictive factors for progression and were combined in scoring systems that allow correct classification of individuals.

View Article and Find Full Text PDF

Galectins are carbohydrate binding proteins with versatile functions in tumor progression. Galectin-9, encoded by LGALS9, has been associated with metastasis and immunosuppression. We previously reported on regulation of LGALS9 expression during endothelial cell activation.

View Article and Find Full Text PDF

Galectin family members have been shown to exert multiple roles in the context of tumor biology. Several recent findings support a similar multi-faceted role for galectin-9. Galectin-9 expression is frequently altered in cancer as compared to normal tissues.

View Article and Find Full Text PDF

Disruption of fetal-maternal tolerance mechanisms can contribute to pregnancy complications, including spontaneous abortion. Galectin-9 (LGALS9), a tandem repeat lectin associated with immune modulation, is expressed in the endometrium during the mid and late secretory phases and in decidua during human early pregnancy. However, the role of LGALS9 during pregnancy remains poorly understood.

View Article and Find Full Text PDF

Tumor angiogenesis facilitates tumor metastasis and allows malignant tissues to grow beyond a diffusion limited size. It is a complex process that requires endothelial cells to execute specific steps during different phases. miRNAs are small non-coding RNAs that act as molecular switches to redirect the expression profile of a cell.

View Article and Find Full Text PDF