As the world is shifting from internal combustion engine vehicles to electric vehicles in response to environmental pollution, the tire industry has been conducting research on tire performance to meet the requirements of electric vehicles. In this experiment, functionalized liquid butadiene rubber (F-LqBR) with triethoxysilyl groups at both ends was introduced into a silica-filled rubber compound as a substitute for treated distillate aromatic extract (TDAE) oil, and comparative evaluation was conducted according to the number of triethoxysilyl groups. The results showed that F-LqBRs improved silica dispersion in the rubber matrix through the formation of chemical bonds between silanol groups and the base rubber, and reduced rolling resistance by limiting chain end mobility and improving filler-rubber interaction.
View Article and Find Full Text PDFNaringin is a flavonoid found in citrus fruits. It exhibits biological activities, such as anticancer and antioxidant effects, but it suffers from low solubility and low stability in lipophilic systems. These drawbacks lead to difficulties in the commercial application of naringin, but they can be overcome through esterification.
View Article and Find Full Text PDFRecently, research conducted on tread compounds with liquid butadiene rubber (LqBR) have been conducted in the tire industry. In particular, the introduction of functional groups into LqBRs is expected to lower hysteresis loss caused by the free chain ends of LqBR. To study this, LqBRs with functional groups at different positions were synthesized.
View Article and Find Full Text PDFA series of compounds derived from a previously identified substrate analogue of copper amine oxidases (CuAOs) (Shepard et al. (2002) Eur. J.
View Article and Find Full Text PDFPropargylic and activated allylic amines are known to inactivate the quinone-dependent plasma amine oxidases, possibly through active-site modification by the alpha,beta-unsaturated aldehyde turnover products. Although homopropargylamine (1-amino-3-butyne, 1) is a nonobvious candidate as a mechanism-based inhibitor, 1 was found to be an unusually potent time- and concentration-dependent irreversible inactivator of bovine plasma amine oxidase (BPAO), exhibiting a 30 min IC(50) of 2.9 microM at 30 degrees C ([BPAO] = 1.
View Article and Find Full Text PDFBovine plasma amine oxidase (BPAO) was previously shown to be irreversibly inhibited by propargylamine and 2-chloroallylamine. 1,4-Diamine versions of these two compounds are here shown to be highly potent inactivators, with IC50 values near 20 microM. Mono-N-alkylation or N,N-dialkylation greatly lowered the inactivation potency in every case, whereas the mono-N-acyl derivatives were also weaker inhibitors and enzyme activity was recoverable.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2003
Propargylamine was reported many years ago to be a mechanism-based inhibitor of bovine plasma amine oxidase (BPAO), though the potency was modest and allylamine was a substrate. Herein, selected 3-substituted propargylamines and allylamines were found to be potent time-dependent inactivators of BPAO, exhibiting IC(50) values of 2-13 microM at 30 degrees C, making them the most potent BPAO inhibitors reported to date. The most potent compound, trans-3-chloroallylamine, was previously found not to inhibit the flavin-dependent monoamine oxidase (the cis isomer did), and thus appears to be a highly selective inhibitor.
View Article and Find Full Text PDFBiochim Biophys Acta
April 2003
Propargylamine and 2-butynamine were reported to serve as mechanism-based inactivators of the copper-containing bovine plasma amine oxidase (BPAO). Here, Ar- or Ar-X-extended analogs (X=NH, O, S) of these small molecules were synthesized and evaluated as BPAO inhibitors. 4-Phenoxy-2-butynamine and its aryl ring substituted analogs were found to be both good substrates and time- and concentration-dependent irreversible inactivators.
View Article and Find Full Text PDF