Publications by authors named "Heung-Kyu Lee"

The role of γδ T cells in antitumor responses has gained significant attention due to their unique major histocompatibility complex (MHC)-independent killing mechanisms, which distinguish them from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes from one another within the tumor microenvironment (TME).

View Article and Find Full Text PDF
Article Synopsis
  • Certain cancers, like glioblastoma (GBM), show resistance to immune therapies due to low mutation rates and a lack of immune response features, prompting research into enhancing T cells that possess stem-like properties.
  • Studies in mice tested the effectiveness of anti-PD-1 immunotherapy combined with strategies to maintain the activity of these stem-like T cells, revealing improvements in survival and immune response.
  • Results indicated that combining anti-PD-1 therapy with other treatments significantly increases the effectiveness of CD8 T cells, with the presence of tumor-specific memory T cells exhibiting strong stemness driving this enhanced antitumor response.
View Article and Find Full Text PDF

Downstream interferon signaling through the type I interferon (IFN) receptor, IFNAR, is crucial for the proper production of type I IFNs in mounting anti-tumor immune responses. Our study investigates the role of type I IFN signaling in the glioblastoma (GBM) tumor microenvironment by leveraging single-cell RNA sequencing to analyze tumor-infiltrating lymphocytes. We investigate how type I IFN signaling within the myeloid compartment contributes to the crosstalk with T cells in the tumor microenvironment.

View Article and Find Full Text PDF

Interferons are a family of cytokines that are famously known for their involvement in innate and adaptive immunity. Type I interferons (IFNs) exert pleiotropic effects on various immune cells and contribute to tumor-intrinsic and extrinsic mechanisms. Their pleiotropic effects and ubiquitous expression on nucleated cells have made them attractive candidates for cytokine engineering to deliver to largely immunosuppressive tumors.

View Article and Find Full Text PDF

Background: Water electrospray technology has been developed and extensively studied for its physical properties and potential application as a non-chemical biocide against airborne pathogens. However, there are still concerns regarding the safety and potential toxicity of inhaling water electrospray (WE) particles. To address these potential hazards and offer insights into the impact of WE on humans, we analyzed the immunopathological response to WE by employing an intranasal challenge C57BL/6 mouse model.

View Article and Find Full Text PDF

Anticancer chemo-immunotherapy has gained considerable attention across various scientific domains as a prospective approach for the comprehensive eradication of malignant tumors. Recent research has particularly been focused on traditional anthracycline chemo drugs, such as doxorubicin and mitoxantrone. These compounds trigger apoptosis in tumor cells and evoke immunogenic cell death (ICD).

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome.

View Article and Find Full Text PDF

Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis.

View Article and Find Full Text PDF

A high-sugar diet induces lifestyle-associated metabolic diseases, such as obesity and diabetes, which may underlie the pro-tumor effects of a high-sugar diet. We supply GL261 syngeneic glioblastoma (GBM) mice with a short-term high-glucose drink (HGD) and find an increased survival rate with no evidence of metabolic disease. Modulation of the gut microbiota through HGD supplementation is critical for enhancing the anti-tumor immune response.

View Article and Find Full Text PDF

The mucosa is a tissue that covers numerous body surfaces, including the respiratory tract, digestive tract, eye, and urogenital tract. Mucosa is in direct contact with pathogens, and γδ T cells perform various roles in the tissue. γδ T cells efficiently defend the mucosa from various pathogens, such as viruses, bacteria, and fungi.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic caused by SARS-CoV-2 infection has threatened global health. Since the first case of infection was reported in December 2019, SARS-CoV-2 has rapidly spread worldwide and caused millions of deaths. As vaccination is the best way to protect the host from invading pathogens, several vaccines have been developed to prevent the infection of SARS-CoV-2, saving numerous lives thus far.

View Article and Find Full Text PDF

Type I interferons have long been appreciated as a cytokine family that regulates antiviral immunity. Recently, their role in eliciting antitumor immune responses has gained increasing attention. Within the immunosuppressive tumor microenvironment (TME), interferons stimulate tumor-infiltrating lymphocytes to promote immune clearance and essentially reshape a "cold" TME into an immune-activating "hot" TME.

View Article and Find Full Text PDF

Obesity affects susceptibility to sexually transmitted diseases like genital herpes, caused by herpes simplex virus (HSV) 2. The γδ T cells in the vagina play a major role in HSV-2 suppression. Here, we present a protocol for inducing HSV-2 infection intravaginally in high-fat diet-induced obese mice.

View Article and Find Full Text PDF

CD4 T cells play major roles in the adaptive immune system, which requires antigen recognition, costimulation, and cytokines for its elaborate orchestration. Recent studies have provided new insight into the importance of the supramolecular activation cluster (SMAC), which comprises concentric circles and is involved in the amplification of CD4 T cell activation. However, the underlying mechanism of SMAC formation remains poorly understood.

View Article and Find Full Text PDF

Oxygen is a vital component of living cells. Low levels of oxygen in body tissues, known as hypoxia, can affect multiple cellular functions across a variety of cell types and are a hallmark of brain tumors. In the tumor microenvironment, abnormal vasculature and enhanced oxygen consumption by tumor cells induce broad hypoxia that affects not only tumor cell characteristics but also the antitumor immune system.

View Article and Find Full Text PDF

Background: Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway.

Objective: We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells.

View Article and Find Full Text PDF

Despite the therapeutic success of immune checkpoint blockade (ICB) therapy against multiple tumors, many patients still do not benefit from ICB. In particular, high-grade brain tumors, such as glioblastoma multiforme (GBM), have a very low response rate to ICB, resulting in several failed clinical trials. This low response rate might be caused by a lack of understanding of the unique characteristics of brain immunity.

View Article and Find Full Text PDF

Obesity is detrimental to the immune system. It impairs lymphatics, T cell development, and lymphopoiesis; induces dysfunction of antitumor immunity; and also promotes tumor progression. However, direct evidence of the impact of obesity on viral infection is lacking.

View Article and Find Full Text PDF

Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand-receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand-receptor interactions and provide a basis for using γδ T cells to treat glioblastoma.

View Article and Find Full Text PDF

Infiltrating tumor-associated macrophages (TAM) are known to impede immunotherapy against glioblastoma (GBM), however, TAMs are heterogeneous, and there are no clear markers to distinguish immunosuppressive and potentially immune-activating populations. Here we identify a subset of CD169 macrophages promoting an anti-tumoral microenvironment in GBM. Using single-cell transcriptome analysis, we find that CD169 macrophages in human and mouse gliomas produce pro-inflammatory chemokines, leading to the accumulation of T cells and NK cells.

View Article and Find Full Text PDF

With the advance in user-friendly and powerful video editing tools, anyone can easily manipulate videos without leaving prominent visual traces. Frame-rate up-conversion (FRUC), a representative temporal-domain operation, increases the motion continuity of videos with a lower frame-rate and is used by malicious counterfeiters in video tampering such as generating fake frame-rate video without improving the quality or mixing temporally spliced videos. FRUC is based on frame interpolation schemes and subtle artifacts that remain in interpolated frames are often difficult to distinguish.

View Article and Find Full Text PDF

Despite the recognized importance of antitumor immunity, our understanding of brain tumor immunity is poor. Orthotopic injection models have been widely used for immunological analyses. However, these models have limitations in analysis of antitumor immunity because the approach involves drilling skulls and injecting tumor cells, which can induce adverse effects.

View Article and Find Full Text PDF

The female reproductive tract harbors a unique microbiome, especially the vagina. The human vaginal microbiome exhibits a low diversity and is dominated by species, compared to the microbiome of other organs. The host and vaginal microbiome mutually coexist in the vaginal microenvironment.

View Article and Find Full Text PDF

Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy.

View Article and Find Full Text PDF

Microbiota is essential to the development and functional maturation of the immune system. The effects of the gut microbiota on myeloid cells remote from the gut, especially the skin remain unclear. Transcriptomic analysis revealed that type I interferon (IFN) signaling was down-regulated in the skin of germ-free mice compared to that in specific pathogen-free mice.

View Article and Find Full Text PDF