Background: Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair.
View Article and Find Full Text PDFMelanoma, a highly malignant and aggressive form of skin cancer, poses a significant global health threat, with limited treatment options and potential side effects. In this study, we developed a temperature-responsive hydrogel for skin regeneration with a controllable drug release. The hydrogel was fabricated using an interpenetrating polymer network (IPN) of -isopropylacrylamide (NIPAAm) and poly(vinyl alcohol) (PVA).
View Article and Find Full Text PDFTendon, connective tissue between bone and muscle has unique component of the musculoskeletal system. It plays important role for transporting mechanical stress from muscle to bone and enabling locomotive motion of the body. There are some restoration capacities in the tendon tissue, but the injured tendons are not completely regenerated after acute and chronic tendon injury.
View Article and Find Full Text PDFIn this study, we prepared visible light-curable methacrylated glycol chitosan (MGC) hydrogel patches for the prenatal treatment of fetal myelomeningocele (MMC) and investigated their feasibility using a retinoic acid-induced fetal MMC rat model. 4, 5, and 6 w/v% of MGC were selected as candidate precursor solutions, and photo-cured for 20 s, because the resulting hydrogels were found to possess concentration dependent tunable mechanical properties and structural morphologies. Moreover, these materials exhibited no foreign body reactions with good adhesive properties in animal studies.
View Article and Find Full Text PDFThe collagen-mimetic peptide GFOGER possesses the chondrogenic potential and has been used as a cell adhesion peptide or chondrogenic inducer. Here, we prepared an injectable in situ forming composite hydrogel system comprising methoxy polyethylene glycol-b-polycaprolactone (MPEG-PCL) and GFOGER-conjugated PEG-PCL (GFOGER-PEG-PCL) with various GFOGER concentrations based on our recently patented technology. The conjugation of GFOGER to PEG-PCL was confirmed by H NMR, and the particle size distribution and rheological properties for the sol-gel transition behavior of the samples with respect to the GFOGER content were evaluated systemically.
View Article and Find Full Text PDFA cavity defect inside the bone is formed by deformed cancellous bone from the fixation of the cortical bone, and consequently, abnormal bone healing occurs. Therefore, repairing cancellous bone defects is a remarkable topic in orthopedic surgery. In this study, we prepared bone marrow-derived stem cell (BMSC)-laden and bone morphogenetic protein-2 (BMP-2)-laden visible light-cured carboxymethyl chitosan (CMCS) hydrogels for cortical and cancellous bone healing.
View Article and Find Full Text PDFBackground: Although the use of cardiac patches is still controversial, cardiac patch has the significance in the field of the tissue engineered cardiac regeneration because it overcomes several shortcomings of intra-myocardial injection by providing a template for cells to form a cohesive sheet. So far, fibrous scaffolds fabricated using electrospinning technique have been increasingly explored for preparation of cardiac patches. One of the problems with the use of electrospinning is that nanofibrous structures hardly allow the infiltration of cells for development of 3D tissue construct.
View Article and Find Full Text PDFAlthough chitosan is the second most abundant natural polymer on earth, with a wide range of biomaterial applications, its poor water solubility limits general printing process. We selected water-soluble methacrylated glycol chitosan (MeGC) as an alternative and prepared a MeGC-based MG-63 cell-laden bioink for 3D printing using a visible light curing system. Optimal cell-laden 3D printing of MeGC was completed at 3% using 12 μM of riboflavin as a photoinitiator under an irradiation for 70 s, a 26-gauge nozzle, a pneumatic pressure of 120 kPa, and a printing speed of 6 mm/s, as confirmed by printability, protein adsorption, cell viability, cell proliferation, and osteogenic capability.
View Article and Find Full Text PDFWound recovery close to the function of the native skin is the goal of wound healing. In this study, we prepared foam dressings (FDs; 2-GHC-FD-1-9, 5-GHC-FD-1-9, and 10-GHC-FD-1-9) composed of various concentrations of gelatin, hyaluronic acid, and carboxymethyl chitosan, which are chemically interconnected through amide bond formation, for evaluating wound healing. Tensile and cell proliferation tests showed that 2-GHC-FD-1-9 are suitable for wound dressing.
View Article and Find Full Text PDFInfection is one of several factors that can delay normal wound healing. Antibacterial wound dressings can therefore promote normal wound healing. In this study, we prepared an antibacterial wound dressing, consisting of visible light-cured methacrylated collagen (ColMA) hydrogel and a 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD)/triclosan (TCS) complex (CD-ic-TCS), and evaluated its wound healing effects in vivo.
View Article and Find Full Text PDFIn this study, integrin-mediated targeting and near-infrared fluorescence (NIRF) traceable polyethylene glycol-b-poly(lactic-co-glycolic acid) (PEG-PLGA)-based polymeric nanoparticles (NPs) were prepared to investigate the effects of paclitaxel (PTX) and curcumin (CUR) combination therapy on breast cancer. Cyclic (arginine-glycine-aspartic acid-phenylalanine-lysine) (cRGDfK) was selected as a ligand for breast cancer and conjugated to the end of NPs (cRGDfK-NPs). For fluorescence imaging, sulfo-cyanine 5.
View Article and Find Full Text PDFWe prepared a drug carrier which consisted of injectable methacrylated glycol chitosan (MGC) hydrogel, and a conjugate of 6-monodeoxy-6-monoamino-β-cyclodextrin⋅hydrochloride (6-NH-β-CD⋅HCl), polyethylene glycol (PEG), and folic acid (FA) for the local delivery and improved cellular uptake of paclitaxel (PTX) (MGC/CDPF-ic-PTX). CDPF refers to a conjugate of 6-NH-β-CD⋅HCl, PEG, and FA. The anti-cancer effect was investigated using a xenograft mouse model.
View Article and Find Full Text PDFAccelerating wound healing with minimized bacterial infection has become a topic of interest in the development of the new generation of tissue bio-adhesives. In this study, we fabricated a hydrogel system (MGC-g-CD-ic-TCS) consisting of triclosan (TCS)-complexed beta-cyclodextrin (β-CD)-conjugated methacrylated glycol chitosan (MGC) as an antibacterial tissue adhesive. Proton nuclear magnetic resonance (H NMR) and differential scanning calorimetry (DSC) results showed the inclusion complex formation between MGC-g-CD and TCS.
View Article and Find Full Text PDFThe aim of this study was to investigate the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on novel thermosensitive in situ forming hydrogel systems comprising methoxy polyethylene glycol-polycaprolactone (MP) and RGD-conjugated MP (MP-RGD) in vitro and in vivo. Real-time polymerase chain reaction (PCR) together with immunofluorescence staining revealed the strong expression of osteogenic markers (collagen 1 and osteocalcin) of BMSCs in MP/MP-RGD samples compared to MP samples. PCR array testing also showed the upregulation of the interconnected signaling networks regulating cell proliferation and differentiation, which was further verified through the Kyoto Encyclopedia of Genes and Genomes pathway analysis.
View Article and Find Full Text PDFThe field of tissue regeneration has seen a paradigm shift after one wave of technological innovation after another, which has notably made significant contributions to basic cellular response control and overall tissue regeneration. One particular area that is seeing rekindled interest after technological innovation is managing cell migration toward defects because successful host cell migration from adjacent tissue can accelerate overall regeneration time in tissue defects that are either large in size or irregular in shape. This chapter surveys significant advances on directed cell migration upon topological cues.
View Article and Find Full Text PDFAdv Exp Med Biol
December 2020
Visible light-curable hydrogels have been investigated as tissue engineering scaffolds and drug delivery carriers due to their physicochemical and biological properties such as porosity, reservoirs for drugs/growth factors, and similarity to living tissue. The physical properties of hydrogels used in biomedical applications can be controlled by polymer concentration, cross-linking density, and light irradiation time. The aim of this review chapter is to outline the results of previous research on visible light-curable hydrogel systems.
View Article and Find Full Text PDFOsteosarcoma (OSA) is a difficult cancer to treat due to its tendency for relapse and metastasis; advanced methods are therefore required for OSA treatment. In this study, we prepared a local drug-delivery system for OSA treatment based on doxorubicin·hydrochloride (DOX·HCl)/cisplatin (CP)-loaded visible light-cured glycol chitosan (GC) hydrogel/(2-hydroxypropyl)-beta-cyclodextrin (GDHCP), and compared its therapeutic efficiency with that of DOX·HCl- and CP-loaded GC hydrogels (GD and GHCP). Because of diffusion driven by concentration gradients in the swollen matrix, the three hydrogels showed sustained releases of DOX·HCl and CP over 7 days, along with initial 3-h bursts.
View Article and Find Full Text PDFInt J Mol Sci
September 2019
We used a hydrogel-mediated dual drug delivery approach, based on an injectable glycol chitosan (GC) hydrogel, doxorubicin hydrochloride (DOX⋅HCl), and a complex of beta-cyclodextrin (β-CD) and paclitaxel (PTX) (GDCP) for breast cancer therapy in vitro and in vivo. The hydrogel was swollen over 3 days and remained so thereafter. After an initial burst period of 7 hours, the two drugs were released in a sustained manner for 7 days.
View Article and Find Full Text PDFBisphosphonates (BPs) used for treating skeletal diseases can induce bisphosphonate-related osteonecrosis of the jaw (BRONJ). Despite much effort, effective remedies are yet to be established. In the present study, we investigated the feasibility of polydeoxyribonucleotide (PDRN) extracted from salmon sperm for the treatment of BRONJ, in a BRONJ-induced rat model.
View Article and Find Full Text PDFIn this study, we prepared an injectable drug delivery depot system based on a visible light-cured glycol chitosan (GC) hydrogel containing paclitaxel (PTX)-complexed beta-cyclodextrin (β-CD) (GC/CD/PTX) for ovarian cancer (OC) therapy using a tumor-bearing mouse model. The hydrogel depot system had a 23.8 Pa of storage modulus at 100 rad/s after visible light irradiation for 10 s.
View Article and Find Full Text PDFChitosan, a deacetylated chitin, is one of the few natural polymers similar to glycosaminoglycans (GAGs) widely distributed throughout connective tissues. It has been believed that the excellent biocompatibility of chitosan is largely attributed to this structural similarity. Chitosan is also known to possess biodegradability, antimicrobial activity and low toxicity and immunogenicity which are essential for scaffolds.
View Article and Find Full Text PDFBone tissue engineering scaffolds offer the merits of minimal invasion as well as localized and controlled biomolecule release to targeted sites. In this study, we prepared injectable hydrogel systems based on visible light-cured glycol chitosan (GC) hydrogels containing bone morphogenetic protein-2 (BMP-2) and/or transforming growth factor-beta1 (TGF-β1) as scaffolds for bone formation in vitro and in vivo. The hydrogels were characterized by storage modulus, scanning electron microscopy (SEM) and swelling ratio analyses.
View Article and Find Full Text PDFPoly-l-lysine (PLL) nanoparticle (NP) system was prepared for the controlled release of curcumin (CUR) by pH stimuli, and its theranostic efficacy on cancer was compared to that of CUR solution in vitro and in vivo. Deoxycholic acid (DOCA), methoxy polyethylene glycol (MPEG) and cyanine 5.5 (cy5.
View Article and Find Full Text PDFIn a large tissue defect, faster migration of adjacent tissue toward the defect shortens the tissue regeneration time. Little has been explored on guiding of directional migration from all fronts of the defect boundary towards the center in tissue engineering. This paper demonstrates the effect of radially aligned fibrous scaffolds (RAFSs) coated with polydopamine in order to guide directional migration of human mesenchymal stem cells (hMSCs).
View Article and Find Full Text PDF