Current artificial lungs and respiratory assist devices designed for carbon dioxide removal (CO(2)R) are limited in their efficiency due to the relatively small partial pressure difference across gas exchange membranes. To offset this underlying diffusional challenge, bioactive hollow fiber membranes (HFMs) increase the carbon dioxide diffusional gradient through the immobilized enzyme carbonic anhydrase (CA), which converts bicarbonate to CO(2) directly at the HFM surface. In this study, we tested the impact of CA-immobilization on HFM CO(2) removal efficiency and thromboresistance in blood.
View Article and Find Full Text PDFHollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO(2)) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs.
View Article and Find Full Text PDFTo improve the thromboresistance of a titanium alloy (TiAl(6)V(4)) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl(6)V(4) surface by a plasma induced technique. Cleaned TiAl(6)V(4) surfaces were pretreated with H(2)O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma.
View Article and Find Full Text PDFInefficient CO(2) removal due to limited diffusion represents a significant barrier in the development of artificial lungs and respiratory assist devices, which use hollow fiber membranes (HFMs) as the blood-gas interface and can require large blood-contacting membrane area. To offset the underlying diffusional challenge, "bioactive" HFMs that facilitate CO(2) diffusion were prepared via covalent immobilization of carbonic anhydrase (CA), an enzyme which catalyzes the conversion of bicarbonate in blood to CO(2), onto the surface of plasma-modified conventional HFMs. This study examines the impact of enzyme attachment on the diffusional properties and the rate of CO(2) removal of the bioactive membranes.
View Article and Find Full Text PDFRemoval of blood group antibodies against the donor organ prior to ABO-incompatible transplantation can prevent episodes of hyperacute rejection. We are developing a specific antibody filter (SAF) device consisting of immobilized synthetic Atrisaccharide antigens conjugated to polyacrylamide (Atri-PAA) to selectively remove anti-A antibodies directly from whole blood. In this study, we evaluated eight anti-A IgM monoclonal antibodies (mAbs) using Enzyme-Linked Immunosorbent Assay (ELISA) to determine their specificity for binding to Atri-PAA.
View Article and Find Full Text PDFA photometric immunosensor that can be used for on-site diagnosis has been constructed. The sensor system was assembled by partially superimposing a nitrocellulose membrane strip (the lower) containing an immobilized antigen on the surface with a glass fiber membrane strip (the upper) including two electrodes on the opposite surfaces. To amplify the signal, we introduced a liposome, containing ruthenium molecules trapped in the core, chemically coupled to an antibody specific to the analyte (e.
View Article and Find Full Text PDF