Publications by authors named "Heung-Bae Jeon"

Puerarin is a flavonoid known as a natural antioxidant found in the root of . Its antioxidant, anticancer, and anti-inflammatory effects have attracted attention as a potential functional ingredient in various bioindustries. However, puerarin has limited bioavailability owing to its low lipid solubility and stability.

View Article and Find Full Text PDF

Polymers containing cyclic derivatives are a new class of macromolecular topologies with unique properties. Herein, we report the synthesis of a triblock copolymer containing a spirocyclic mid-block. To achieve this, a spirocyclic polystyrene (cPS) mid-block was first synthesized by atom transfer radical polymerization (ATRP) using a tetra-functional initiator, followed by end-group azidation and a copper (I)-catalyzed azide-alkyne cycloaddition reaction.

View Article and Find Full Text PDF

Different types of polymer chains generated during the nitroxide-mediated polymerization of styrene are separated for the first time, and their molecular weight distribution (MWD) is investigated. Living and dead chains are monitored during the reaction; specifically, two types of living chains derived from the initiation of the alkoxyamine (RT) and the self-initiation of styrene and dead chains present in the as-prepared polystyrene (PS). To distinguish between each polymer species, different numbers of hydroxyl groups are introduced onto the T and R groups of the alkoxyamine (one and two groups, respectively).

View Article and Find Full Text PDF

Redox-initiated reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerizations are successfully conducted with an employment of trithiocarbonate-based macro-RAFT agents and surfactant. Two macro-RAFT agents-hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA ) and amphiphilic poly(poly(ethylene glycol) methyl ether methacrylate)-b-polystyrene (PPEGMA -b-PS )- are examined for the miniemulsion polymerization of styrene. The use of PPEGMA (in the presence of sodium dodecyl sulfate (SDS)) results in a slow polymerization rate with a broad particle size.

View Article and Find Full Text PDF

For InP-based QDs, the current technology does not outperform CdSe-based QDs in many respects, one of which is stability. The optical stability of QDs is closely related to their surface properties, so QDs often use organic ligands for surface protection. These organic ligands are dynamically attached and detached on the QD surface; during detachment, their surfaces are easily damaged and oxidized, thereby deteriorating their optical characteristics.

View Article and Find Full Text PDF

A composite solid propellant which generates high propulsive force in a short time is typically composed of an oxidizer, a metal fuel powder and a binder. Among these, the binder is an important component. The binder maintains the mechanical properties of propellant grains and endures several thermal and mechanical stresses in the engine.

View Article and Find Full Text PDF

Recently, InP-based quantum dots (QDs) have received significant attention due to their usefulness in display applications, and the search for good optical properties has led to numerous reports on the testing of reaction variables. However, most researchers have precluded the most important anion precursors in their studies, instead of focusing only on tris(trimethylsilyl)phosphine(P(SiMe), TMS3P) precursors. Due to its vulnerability to moisture, TMS3P is unstable and difficult to handle.

View Article and Find Full Text PDF

An efficient direct phthalic anhydride-mediated one-pot glycosylation method employing anomeric hydroxy arabinofuranose as glycosyl donor and triflic anhydride as activating agent has been developed. This method afforded the desired di- and oligoarabinofuranosides in good yields even in gram scale glycosylation when t-butylphthalic anhydride was used. Moreover, our new method can be further extended to the syntheses of repeating oligoarabinofuranoside and tetradecasaccharide arabinan motif found in mycobacterial cell wall.

View Article and Find Full Text PDF

We synthesized poly((furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) (p(FMA-co-DMAEMA)) for the dispersion of single-walled carbon nanotubes (SWCNTs) while maintaining their high aspect ratios. The nanotubes' length and height were 2.0 μm and 2 nm, as determined by transmission electron microscopy and atomic force microscopy, respectively.

View Article and Find Full Text PDF

Although a number of methods have been developed to reduce sulfoxides to sulfides, many of these processes are limited by side reactions, low yields, poorly available reagents, or harsh reaction conditions. We recently studied the reaction of various sulfoxides with SOCl2 and Ph3P. We were able to obtain the corresponding sulfides in excellent yields (>90%) when aliphatic and aromatic sulfoxides were treated with SOCl2 as a catalyst and Ph3P in THF at room temperature.

View Article and Find Full Text PDF

We carried out hydrazine-free, surfactant-free synthesis of noble metal/graphene nanocomposites. The reduction of the noble metals and GO was carried out simultaneously in hot water using ascorbic acid as a reductant. In the noble metal/graphene nanocomposites of Pd, Pt, Au, and Ag nanoparticles, the GO and metal salts were reduced completely by this synthetic method.

View Article and Find Full Text PDF

Cysteamine (1) was reported many years ago to reversibly inhibit lentil seedling amine oxidase, through the formation of a complex with thioacetaldehyde, the turnover product of 1. Herein, cysteamine (1) and its analogs 2-(methylamino)ethanethiol (3) and 3-aminopropanethiol (6) were found to be reversible inhibitors of bovine plasma amine oxidase (BPAO), but 2-(methylthio)ethylamine (7) was determined to be a weak irreversible inhibitor of BPAO. Based on our results, indicating the necessity of a sulfhydryl-amine for reversible inactivation of BPAO, the failure of inhibited BPAO to recover activity after gel filtration, the first-order kinetics of activity recovery upon dialysis, and 2,4,6-trihydroxyphenylalanine quinine (TPQ) cofactor transformation which indicated from the results of phenylhydrazine titration and substrate protection, we propose a mechanism for the reversible inactivation of BPAO by 1 involving the formation of a cofactor adduct, thiazolidine, between BPAO and 1.

View Article and Find Full Text PDF

A new series of bromophenols was synthesized by reactions of corresponding phenol analogs with bromine. The synthesized compounds were tested for inhibitory activity against isocitrate lyase (ICL) of Candida albicans and antimicrobial activity against gram-positive and, gram-negative bacteria and fungi. Among the synthesized bromophenols, bis(3-bromo-4,5-dihydroxyphenyl)methanone (11) and (3-bromo-4,5-dihydroxyphenyl)(2,3-dibromo-4,5-dihydroxyphenyl)methanone (12) displayed potent inhibitory activities against ICL, showing a stronger inhibitory effects than were found with natural bromophenol 1.

View Article and Find Full Text PDF

A series of halophenols was prepared by the reaction of bis(hydroxyphenyl)methanes with effective halogenating agents such as bromine and sulfuryl chloride. One of these compounds, a biologically active halophenol--2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxydiphenylmethane (1)--frequently isolated from red algae, was synthesized for the first time. Other halophenols included several novel compounds, together with known derivatives that were synthesized from the phenolic intermediates, bis(3,4-dihydroxyphenyl)methane (5) and bis(2-hydroxyphenyl)methane (14).

View Article and Find Full Text PDF

An efficient direct one-pot glycosylation method with anomeric hydroxy sugars as glycosyl donors employing phthalic anhydride and triflic anhydride as activating agents has been developed. Thus, highly stereoselective beta-mannopyranosylations were achieved by the reaction of 2,3-di-O-benzyl-4,6-O-benzylidene-D-mannopyranose (2) with phthalic anhydride in the presence of DBU at room temperature followed by sequential addition of DTBMP and Tf2O and glycosyl acceptors to the reaction mixture at -78 degrees C in one-pot. Stereoselective alpha-glucopyranosylations with 2,3-di-O-benzyl-4,6-O-benzylidene-D-glucopyranose (25) and other glycosylations with glucopyranoses and mannopyranoses having tetra-O-benzyl- and tetra-O-benzoyl protecting groups were also possible by utilizing the present one-pot glycosylation protocol.

View Article and Find Full Text PDF

The concept of lactonization-mediated and related glycosylations led us to develop new methods of glycosylation such as the 2'-carboxybenzyl (CB) glycoside method, the glycosyl pentenoate/phenylselenyl trifluoromethanesulfonate (PhSeOTf) method, and the glycosyl aryl phthalate method. Highly stereoselective beta-mannopyranosylations were achieved by employing the CB glycoside and the glycosyl pentenoate/PhSeOTf methods. The CB glycoside method was also utilized for stereoselective 2-deoxyglycosylation, beta-arabinofuranosylation, and alpha-galactofuranosylation.

View Article and Find Full Text PDF

Synthesis of trisaccharide repeating unit, -->3)-alpha-D-Rhap-(1-->2)-alpha-D-Manp3CMe-(1-->3)-alpha-L-Rha p-(1-->, and its dimeric hexa- and trimeric nonasaccharide subunits of the atypical O-antigen polysaccharide of the lipopolysaccharide from Danish H. pylori strains D1, D3, and D6 has been accomplished. Successful synthesis of the hexasaccharide and the nonasaccharide was possible by dimerization and trimerization of the suitably protected trisaccharide repeating unit, in which three monosaccharide moieties were arranged in a proper order by placing the sterically demanding 3-C-methyl-D-mannose moiety in between D- and L-rhamnoses.

View Article and Find Full Text PDF

The total synthesis of agelagalastatin, an antineoplastic glycosphingolipid, has been achieved. The synthesis involved an alpha-selective glycosylation of the ceramide moiety with the trisaccharide fluoride. The trisaccharide component was constructed employing the CB glycoside method which permitted a completely alpha-stereoselective galactofuranosylation.

View Article and Find Full Text PDF

Four new side-chain amide (2 and 3) and hydroxamate (4 and 5) analogs of the hormone calcitriol (1) have been prepared. Even though lacking the 25-OH group characteristic of natural calcitriol (1), analogs 2-4 are as antiproliferative in vitro as calcitriol (1) but are 20-40 times less calciuric in vivo than calcitriol (1).

View Article and Find Full Text PDF

Glycosylation of various glycosyl acceptors with 2'-carboxybenzyl (CB) 2,3,4,6-tetra-O-benzyl-beta-D-glucopyranoside and CB 2,3,4,6-tetra-O-benzyl-alpha-D-mannopyranoside as glycosyl donors afforded alpha-C-glycosides exclusively or predominantly in good yields. CB glycosides were also converted to other well-known glycosyl donors, the corresponding phenyl thioglycoside and the glycosyl fluoride derivatives.

View Article and Find Full Text PDF

A series 2a-4b of seven new side-chain ketone analogs of calcitriol (1) have been prepared. Unexpectedly, several of these 24- and 25-tert-butyl ketones, even though lacking the classical side-chain tertiary hydroxyl group, are considerably more antiproliferative in vitro than the hormone calcitriol (1) even at physiologically relevant low nanomolar concentrations and are less calcemic than calcitriol (1) in vivo. In addition, ketone analog 19-nor-2a is not significantly less calcemic in vivo than 19-methylene analog 2a.

View Article and Find Full Text PDF

[reaction: see text]. A reliable and generally applicable direct method for the stereoselective beta-arabinofuranosylation employing a 2'-carboxybenzyl arabinofuranoside as the glycosyl donor has been established. The acyl-protective group on glycosyl acceptors is essential for the beta-stereoselectivity.

View Article and Find Full Text PDF

An efficient synthesis of valienamine is described. Valienamine was synthesized starting from commercially available 2,3,4,6-tetra-O-benzyl-D-glucose in nine steps, using ring-closing metathesis of (4S,5S,6S)-4,5,6-tribenzyloxy-7-(benzyloxymethyl)octa-1,7-dien-3-ol as a key step.

View Article and Find Full Text PDF

Based on an X-ray crystal structure determination, the A-ring stereochemistry of hybrid analog QW-1624F2-2 (1alpha-hydroxymethyl-16-ene-24,24-difluoro-25-hydroxy-26,27-bis-homovitamin D3) is revised to be 1alpha-CH2OH-3beta-OH. This analog is shown to be approximately 80-100 times less calciuric than the natural hormone 1alpha,25-dihydoxyvitamin D3. This analog is shown also to be non-genotoxic in three different standard assays.

View Article and Find Full Text PDF