Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death.
View Article and Find Full Text PDFCa/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a major contributor to physiological and pathological glutamate-mediated Ca signals, and its involvement in various critical cellular pathways demands specific pharmacological strategies. We recently presented γ-hydroxybutyrate (GHB) ligands as the first small molecules selectively targeting and stabilizing the CaMKIIα hub domain. Here, we report that the cyclic GHB analogue 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), improves sensorimotor function after experimental stroke in mice when administered at a clinically relevant time and in combination with alteplase.
View Article and Find Full Text PDFHyperactivation of SRC-family protein kinases (SFKs) contributes to the initiation and progression of human colorectal cancer (CRC). Since oncogenic mutations of SFK genes are rare in human CRC, we investigated if SFK hyperactivation is linked to dysregulation of their upstream inhibitors, C-terminal SRC kinase (CSK) and its homolog CSK-homologous kinase (CHK/MATK). We demonstrate that expression of CHK/MATK but not CSK was significantly downregulated in CRC cell lines and primary tumours compared to normal colonic tissue.
View Article and Find Full Text PDFMotivation: Mass spectrometry-based phosphoproteomics can routinely identify and quantify thousands of phosphorylated peptides from a single experiment. However interrogating possible upstream kinases and identifying key literature for phosphorylation sites is laborious and time-consuming.
Results: Here, we present Phosphomatics-a publicly available web resource for interrogating phosphoproteomics data.
Deletion of long arm of chromosome 20 [del(20q)] is the second most frequent recurrent chromosomal abnormality in hematological malignancies. It is detected in 10% of myeloproliferative neoplasms, 4-5% of myelodysplastic syndromes, and 1-2% of acute myeloid leukaemia. Recurrent, non-random occurrence of del(20q) indicates that it is a pathogenic driver in myeloid malignancies.
View Article and Find Full Text PDFExcitotoxicity, caused by overstimulation or dysregulation of ionotropic glutamate receptors (iGluRs), is a pathological process directing neuronal death in many neurological disorders. The aberrantly stimulated iGluRs direct massive influx of calcium ions into the affected neurons, leading to changes in expression and phosphorylation of specific proteins to modulate their functions and direct their participation in the signalling pathways that induce excitotoxic neuronal death. To define these pathways, we used quantitative proteomic approaches to identify these neuronal proteins (referred to as the changed proteins) and determine how their expression and/or phosphorylation dynamically changed in association with excitotoxic cell death.
View Article and Find Full Text PDFThe Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities.
View Article and Find Full Text PDFBackground: C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis.
View Article and Find Full Text PDFStroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors.
View Article and Find Full Text PDFExcitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons.
View Article and Find Full Text PDFDephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN.
View Article and Find Full Text PDFBackground: Src-family kinases (SFKs) are involved in neuronal survival and their aberrant regulation contributes to neuronal death. However, how they control neuronal survival and death remains unclear.
Objective: To define the effect of inhibition of Src activity and expression on neuronal survival.
Protein kinases phosphorylate substrates in the context of specific phosphorylation site sequence motifs. The knowledge of the specific sequences that are recognized by kinases is useful for mapping sites of phosphorylation in protein substrates and facilitates the generation of model substrates to monitor kinase activity. Here, we have adapted a positional scanning peptide library method to a microarray format that is suitable for the rapid determination of phosphorylation site motifs for tyrosine kinases.
View Article and Find Full Text PDFThe Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators.
View Article and Find Full Text PDFGenetic variations of leucine-rich repeat kinase 2 (LRRK2) are the major cause of dominantly inherited Parkinson disease (PD). LRRK2 protein contains seven predicted domains: a tandem Ras-like GTPase (ROC) domain and C-terminal of Roc (COR) domain, a protein kinase domain, and four repeat domains. PD-causative variations arise in all domains, suggesting that aberrant functioning of any domain can contribute to neurotoxic mechanisms of LRRK2.
View Article and Find Full Text PDFThe Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr(530) in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated.
View Article and Find Full Text PDFExcitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain.
View Article and Find Full Text PDFVarious investigators have identified the major domain organization of LRRK2 (leucine-rich repeat kinase 2), which includes a GTPase ROC (Ras of complex proteins) domain followed by a COR (C-terminal of ROC) domain and a protein kinase domain. In addition, there are four domains composed of structural repeat motifs likely to be involved in regulation and localization of this complex protein. In the present paper, we report our bioinformatic analyses of the human LRRK2 amino acid sequence to predict the repeat size, number and likely boundaries for the armadillo repeat, ankyrin repeat, the leucine-rich repeat and WD40 repeat regions of LRRK2.
View Article and Find Full Text PDFMutations of the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) gene can cause early-onset familial Parkinson disease (PD). PINK1 encodes a neuroprotective protein kinase localized at the mitochondria, and its involvement in regulating mitochondrial dynamics, trafficking, structure, and function is well documented. Owing to the lack of information on structure and biochemical properties for PINK1, exactly how PINK1 exerts its neuroprotective function and how the PD-causative mutations impact on PINK1 structure and function remain unclear.
View Article and Find Full Text PDFExcitotoxicity, a major cause of neuronal death in acute and chronic neurodegenerative diseases and conditions such as stroke and Parkinson's disease, is initiated by overstimulation of glutamate receptors, leading to calcium overload in affected neurons. The sustained high concentration of intracellular calcium constitutively activates a host of enzymes, notably the calcium-activated proteases calpains, neuronal nitric oxide synthase (nNOS) and NADPH oxidase (NOX), to antagonise the cell survival signalling pathways and induce cell death. Upon overactivation by calcium, calpains catalyse limited proteolysis of specific cellular proteins to modulate their functions; nNOS produces excessive amounts of nitric oxide (NO), which, in turn, covalently modifies specific enzymes by S-nitrosylation; and NOX produces excessive amounts of reactive oxygen species (ROS) to inflict damage to key metabolic enzymes.
View Article and Find Full Text PDFC-Terminal Src kinase-homologous kinase (CHK) exerts its tumor suppressor function by phosphorylating the C-terminal regulatory tyrosine of the Src-family kinases (SFKs). The phosphorylation suppresses their activity and oncogenic action. In addition to phosphorylating SFKs, CHK also performs non-SFK-related functions by phosphorylating other cellular protein substrates.
View Article and Find Full Text PDFAn improved understanding of the roles of protein kinases in intracellular signalling and disease progression has driven significant advances in protein kinase inhibitor discovery. Peptide inhibitors that target the kinase protein substrate-binding site have continued to attract attention. In the present paper, we describe a novel JNK (c-Jun N-terminal kinase) inhibitory peptide PYC71N, which inhibits JNK activity in vitro towards a range of recombinant protein substrates including the transcription factors c-Jun, ATF2 (activating trancription factor 2) and Elk1, and the microtubule regulatory protein DCX (doublecortin).
View Article and Find Full Text PDFA group of fluorophore-labeled peptide substrates of Src kinases have been synthesized with the aid of click chemistry. Some of the generated peptides exhibit an increase in fluorescence upon phosphorylation and are capable of detecting Src kinases with high sensitivity and specificity. Their availability permits real-time activity measurement of aberrantly activated oncogenic Src kinases in the crude lysate of chronic myelogenous leukemia cells.
View Article and Find Full Text PDF