Marine organisms' lipid metabolism contributes to marine ecosystems by producing a variety of lipid molecules. Historically, research focused on the lipid metabolism of the organisms themselves. Recent microbiome studies, however, have revealed that gut microbial communities influence the amount and type of lipids absorbed by organisms, thereby altering the organism's lipid metabolism.
View Article and Find Full Text PDFIn this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity.
View Article and Find Full Text PDFTo study multigenerational resilience to high temperature (HT) conditions, we exposed Brachionus plicatilis marine rotifers to HT, high salinity (HS), and nanoplastics (NPs), and measured reproductive and life-cycle endpoints. After exposure to HT, rotifer lifespans were reduced, but daily production of offspring increased. However, both combined HT/HS and HT/HS/NP exposure led to additional decreases in longevity and reproductive ability; the antioxidant defense mechanisms of the rotifers were also notably upregulated as measured by reactive oxygen species levels.
View Article and Find Full Text PDFThis study reports the effects of bisphenol A (BPA) on the rotifer Brachionus plicatilis, focusing on growth performance, reproductive output, oxidative stress responses, and lipid metabolism genes. High BPA levels disrupted peak daily offspring production and led to oxidative stress and increased superoxide dismutase and catalase activity. The research identified distinctive monoacylglycerol O-acyltransferase (MGAT) and diacylglycerol O-acyltransferase (DGAT) genes in B.
View Article and Find Full Text PDFRapid, anthropogenic activity-induced global warming is a severe problem that not only raises water temperatures but also shifts aquatic environments by increasing the bioavailability of heavy metals (HMs), with potentially complicated effects on aquatic organisms, including small aquatic invertebrates. For this paper, we investigated the combined effects of temperature (23 and 28 °C) and methylmercury (MeHg) by measuring physiological changes, bioaccumulation, oxidative stress, antioxidants, and the mitogen-activated protein kinase signaling pathway in the marine rotifer Brachionus plicatilis. High temperature and MeHg adversely affected the survival rate, lifespan, and population of rotifers, and bioaccumulation, oxidative stress, and biochemical reactions depended on the developmental stage, with neonates showing higher susceptibility than adults.
View Article and Find Full Text PDFThe adaptation of marine organisms to the impending challenges presented by ocean acidification (OA) is essential for their future survival, and mechanisms underlying OA adaptation have been reported in several marine organisms. In the natural environment, however, marine organisms are often exposed to a combination of environmental stressors, and the interactions between adaptive responses have yet to be elucidated. Here, we investigated the susceptibility of filter-feeding rotifers to short-term (ST) and long-term (LT) (≥180 generations) high CO conditions coupled with nanoplastic (NPs) exposure (ST+ and LT+).
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
December 2022
Studies of changes in fatty acids in response to environmental temperature changes have been conducted in many species, particularly mammals. However, few studies have considered aquatic invertebrates, even though they are particularly vulnerable to changes in environmental temperature. In this review, we summarize the process by which animals synthesize common fatty acids and point out differences between the fatty acid profiles of vertebrates and those of aquatic invertebrates.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
August 2022
The freshwater water flea Daphnia magna is a planktonic animal belonging to the Cladocera. To evaluate differences between two D. magna strains (KIT and NIES) in terms of life parameters and fatty acid profiles, we examined several endpoints.
View Article and Find Full Text PDFThis is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
June 2022
Monogonont rotifers are common species in aquatic environments and make model species for ecotoxicology studies. Whole genomes of several species of the genus Brachionus have been assembled, but no information on the freshwater rotifer Brachionus rubens has been reported. In this study, the whole-genome sequence of B.
View Article and Find Full Text PDFIn this study, we have identified the entire complement of typical homeobox (Hox) genes (Lab, Pb, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) in harpacticoid and calanoid copepods and compared them with the cyclopoid copepod Paracyclopina nana. The harpacticoid copepods Tigriopus japonicus and Tigriopus kingsejongensis have seven Hox genes (Lab, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) and the Pb and Ftz genes are also present in the cyclopoid copepod P. nana.
View Article and Find Full Text PDFUnderstanding the magnitude and causes of isotopic fractionation between organisms and their dietary resources is crucial for gaining knowledge on stable isotope ecology. However, little is known regarding the diet-tissue fractionation values of marine ciliates, which play a critical role in the reconstruction of microbial food webs. In the present study, we conducted experiments on two benthic ( and ) and two pelagic ( and ) marine ciliates, where they were fed with isotopically constant foods ( and ) under laboratory culture conditions to determine their carbon and nitrogen isotopic fractionation values (ΔC and ΔN).
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
December 2020
Low-temperature exposure prolongs lifespans and changes lipid metabolism but the relationship between longevity and lipids is largely unknown. Here, we examine the relationship between longevity and lipid metabolism at low temperatures (20 °C and 15 °C) compared with a 25 °C control. Life parameters, fatty acid composition, and transcriptome changes were analyzed in the monogonont rotifer Brachionus koreanus.
View Article and Find Full Text PDFVarious xenobiotics are constantly being released and accumulated into the aquatic environments and consequently, the aquatic organisms are continuously being exposed to exogenous stressors. Among various xenobiotic detoxifying enzymes, Glutathione S-transferase (GST) is one of the major xenobiotic detoxifying enzyme which is widely distributed among living organisms and thus, understanding of the nature of GSTs is crucial. Previous studies have shown GST activity in response to various xenobiotics yet, full identification of GSTs in marine invertebrates is still limited.
View Article and Find Full Text PDFThe copepod Tigriopus japonicus has been widely used as an experimental species in the field of ecotoxicology. We have sequenced and assembled the whole genome of T. japonicus with comparative analysis of gene families that represent detoxification phases in two additional public genomes of Tigriopus spp.
View Article and Find Full Text PDFBRACHIONUS: spp. (Rotifera: Monogononta) have been introduced as ecotoxicological model-organisms that are widely distributed in aquatic environments. Among the Brachionus spp.
View Article and Find Full Text PDFBrachionus spp. (Rotifera: Monogononta) are globally distributed in aquatic environments and play important roles in the aquatic ecosystem. The marine monogonont rotifer Brachionus plicatilis is considered a suitable model organism for ecology, evolution, and ecotoxicology.
View Article and Find Full Text PDFGlutathione S-transferases (GSTs) play an important role in phase II of detoxification to protect cells in response to oxidative stress generated by exogenous toxicants. Despite their important role in defense, studies on invertebrate GSTs have mainly focused on identification and characterization. Here, we isolated omega and sigma classes of GSTs from the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus koreanus and explored their antioxidant function in response to metal-induced oxidative stress.
View Article and Find Full Text PDFAtrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
June 2019
To understand the lipid metabolism in invertebrate species, identification of the fatty acid (FA) synthesis gene families in invertebrate species is important, since some FA are unable to be synthesized in the organisms by themselves. In the study, to identify the elongation of very long chain fatty acid (Elovl) genes in the marine rotifer Brachionus koreanus, the genome-wide identification and phylogenetic analysis of Elovl genes have been conducted with the expression profile of Elovl genes on the alga Tetraslemis suecica-fed B. koreanus.
View Article and Find Full Text PDFIn this study, the entire glutathione S-transferases (GSTs), the major phase II detoxification enzyme, were identified in two marine copepod species Tigriopus japonicus and Paracyclopina nana. The genome-wide identification of GSTs in T. japonicus and P.
View Article and Find Full Text PDFAlthough many efforts have been made to understand the toxic effects of metals in aquatic invertebrates, there are limited data regarding metal toxicity in natural ecosystems, as most previous studies were conducted under controlled laboratory conditions. To address this data gap, we analyzed toxic effects and molecular responses in the marine rotifer Brachionus koreanus and the marine copepod Tigriopus japonicus following in vivo exposure to a seawater sample collected from a polluted region in South Korea. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of the field seawater sample found a variety of metals.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
March 2019
Cytochrome P450s (CYPs) are a large gene superfamily that are found in all living organisms. CYPs have a key role in detoxification of xenobiotics and endogenous chemicals. Although aquatic invertebrate CYPs and their detoxification mechanisms have been reported, little is known about interspecific comparison of CYPs and their detoxification mechanism in the rotifer Brachionus spp.
View Article and Find Full Text PDFAlthough several studies have reported on different interspecific sensitivities in response to various toxicants, the response mechanisms are still poorly understood. Here, we investigate the interspecific toxicity of cadmium (Cd) and its mechanism using three marine rotifer Brachionus spp. that are distinguishable by body size, which is considered the most significant indicator of phenotypic difference.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2018
Genome-wide identification of glutathione S-transferase (GST), a major phase II detoxification enzyme, was investigated in four different aquatic model rotifer species Brachionus koreanus, B. plicatilis, B. rotundiformis, and B.
View Article and Find Full Text PDF