Background: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive.
View Article and Find Full Text PDFThe representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages.
View Article and Find Full Text PDFOlfactory coding, from insects to humans, is canonically considered to involve considerable across-fiber coding already at the peripheral level, thereby allowing recognition of vast numbers of odor compounds. We show that the migratory locust has evolved an alternative strategy built on highly specific odorant receptors feeding into a complex primary processing center in the brain. By collecting odors from food and different life stages of the locust, we identified 205 ecologically relevant odorants, which we used to deorphanize 48 locust olfactory receptors via ectopic expression in Drosophila.
View Article and Find Full Text PDFMany animals engage in cannibalism to supplement their diets. Among dense populations of migratory locusts, cannibalism is prevalent. We show that under crowded conditions, locusts produce an anticannibalistic pheromone called phenylacetonitrile.
View Article and Find Full Text PDFInsect sexual communication often relies upon sex pheromones. Most insect pheromones, however, contain carbon-carbon double bonds and potentially degrade by oxidation. Here, we show that frequently reported increased levels of Anthropocenic ozone can oxidize all described male-specific pheromones of Drosophila melanogaster, resulting in reduced amounts of pheromones such as cis-Vaccenyl Acetate and (Z)-7-Tricosene.
View Article and Find Full Text PDFUnderstanding neuronal representations of odor-evoked activities and their progressive transformation from the sensory level to higher brain centers features one of the major aims in olfactory neuroscience. Here, we investigated how odor information is transformed and represented in higher-order neurons of the lateral horn, one of the higher olfactory centers implicated in determining innate behavior, using . We focused on a subset of third-order glutamatergic lateral horn neurons (LHNs) and characterized their odor coding properties in relation to their presynaptic partner neurons, the projection neurons (PNs) by two-photon functional imaging.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2020
The sensory neuron membrane protein, SNMP1, was initially discovered in moths and is associated with sex pheromone sensitive neurons, suggesting a role in the detection of these semiochemicals. Although DrosophilaSNMP1 has been reported to be involved in detecting of the sex pheromone cis-vaccenyl acetate (cVA), the role of this protein in moths in vivo is still largely unexplored. In this study we developed a SNMP1 homozygous mutant line of Helicoverpa armigera using CRISPR/Cas9.
View Article and Find Full Text PDFTrehalase is an indispensable component of insect hemolymph that plays important role in energy metabolism and stress resistance. In this study, we cloned and expressed the gene encoding soluble trehalase (HaTreh-1) of Helicoverpa armigera (cotton bollworm) and characterized the enzyme. HaTreh-1 had a full-length open reading frame encoding a protein of 571 amino acids.
View Article and Find Full Text PDFIn order to acquire enough nutrients and energy for further development, larvae need to invest a large portion of their sensory equipments to identify food sources. Yet, the molecular basis of odor-driven behavior in larvae has been poorly investigated. Information on olfactory genes, particularly odorant binding proteins (OBPs) and chemosensory proteins (CSPs) which are involved in the initial steps of olfaction is very scarce.
View Article and Find Full Text PDFMany insect species use multi-component sex pheromones to discriminate among potential mating partners [1-5]. In moths, pheromone blends tend to be dominated by one or two major components, but behavioral responses are frequently optimized by the inclusion of less abundant minor components [6]. An increasing number of studies have shown that female insects use these chemicals to convey their mating availability to males, who can assess the maturity of females and thus decide when to mate [7, 8].
View Article and Find Full Text PDFMale moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H.
View Article and Find Full Text PDFSexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system.
View Article and Find Full Text PDF