With the development of biomaterials, more attention is paid to the adhesion characteristics between cells and materials. It is necessary to study the adhesive force with a suitable method. Silk fibroin (SF) is widely investigated in biomedical application due to its novel biocompatibility and mechanical properties.
View Article and Find Full Text PDFAu@Cu2- x S core-shell nanocrystals (NCs) have been synthesized under large lattice mismatch with high crystallinity, controllable shape, and nonstoichiometric composition. Both experimental observations and simulations are used to verify the flexible dual-mode plasmon coupling. The enhanced photothermal effect is harnessed for diverse HeLa cancer cell ablation applications in the NIR-I window (750-900 nm) and the NIR-II window (1000-1400 nm).
View Article and Find Full Text PDFBombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an "inert" material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization.
View Article and Find Full Text PDFSubstitutional heterovalent doping represents an effective method to control the optical and electronic properties of nanocrystals (NCs). Highly monodisperse II-VI NCs with deep substitutional dopants are presented. The NCs exhibit stable, dominant, and strong dopant fluorescence, and control over n- and p-type electronic impurities is achieved.
View Article and Find Full Text PDFHierarchical olive-like structured carbon-Fe3O4 nanocomposite particles composed of a hollow interior and a carbon coated surface are prepared by a facile, silk protein-assisted hydrothermal method. Silk nanofibers as templates and carbon precursors first regulate the formation of hollow Fe2O3 microspheres and then they are converted into carbon by a reduction process into Fe3O4. This process significantly simplifies the fabrication and carbon coating processes to form complex hollow structures.
View Article and Find Full Text PDFPhosphine-initiated cation exchange is a well-known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine-initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core-shell and doped nanocrystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
The influence of silk fibroin (SF) on calcium carbonate (CaCO3) biomineralization has been investigated; however, the formation of small, uniform SF-regulated vaterite microspheres has not been reported. In this work, spherical CaCO3 was synthesized via coprecipitation in the presence of SF. SF nanostructures were first tuned by self-assembly at 60 °C to provide better control of the nucleation of CaCO3.
View Article and Find Full Text PDFReconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. To foster improvements, the control of neural stem cell (NSC) behaviors, including migration, proliferation and differentiation are critical factors to consider. Topographical and mechanical stimulation based on the control of biomaterial features is a promising approach, which are usually studied separately.
View Article and Find Full Text PDFThree-dimensional (3-D) porous silk scaffolds with good biocompatibility and minimal immunogenicity show promise in a range of tissue regeneration applications. However, the challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy the specific requirements of different tissues. In this study, silk scaffolds were fabricated to form an extracellular matrix (ECM) mimetic nanofibrous architecture using a mild process.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2015
Osteoinductive silk/hydroxyapatite (HA) composite scaffolds for bone regeneration were prepared by combining silk with HA/silk core-shell nanoparticles. The HA/silk nanoparticles were directly dispersed in silk solution to form uniform silk/HA blend and then composite scaffolds after a freeze-drying process. The HA/silk nanoparticles uniformly distributed in silk scaffolds at nanometer scale at varying HA content up to 40%, and substantially improved the compressive strength of the scaffolds produced.
View Article and Find Full Text PDFA one-step hydrothermal process with silk fibroin (SF) nanofibers as the template and coating was developed to synthesize core-shell magnetite/SF nanoparticles with limited controllable sizes. The FeO nanoparticles gradually aggregated into nanospheres with sizes increased from 120 to 500 nm by increasing the SF content in the reaction system. The magnetic properties and biocompatibility of FeO/SF nanoparticles, as well as their functional ability with antibodies are also discussed to assess their possible applications in MRI and bio-separation.
View Article and Find Full Text PDFBiomacromolecules
August 2014
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.
View Article and Find Full Text PDFSilk-based porous scaffolds have been used extensively in tissue engineering because of their excellent biocompatibility, tunable biodegradability and robust mechanical properties. Although many silk-based scaffolds have been prepared through freeze-drying, a challenge remains to effectively control porous structures during this process. In the present study silk fibroin with different nanostructures were self-assembled in aqueous solution by repeated drying-dissolving process and then used to improve porous structure formation in lyophilization process.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2014
In the present study, silk fibroin (SF) was used as a template to prepare nano-hydroxyapatite (nano-HA) via a biomineralization process. We observed that the content of SF affected both the morphology and water dispersibility of nano-HA particles. Scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), zetasizer, and Fourier transform infrared spectroscopy (FTIR) were used to examine nano-HA particle features including the surface morphology, aggregation performance, and crystallization.
View Article and Find Full Text PDFThe existence of lattice strain between two different materials can be used to control the fine structural configuration in a hybrid colloidal nanostructure. Enabled by such, the relative position change of Au and CdX in Au-CdX from a symmetric to an asymmetric configuration is demonstrated, which can further lead to fine tuning of plasmon-exciton coupling and different hydrogen photocatalytic performance. These results provide new insight into plasmon enhanced photocatalytic mechanisms and provide potential catalysts for photoreduction reactions.
View Article and Find Full Text PDFA major block in the development of small diameter vascular grafts is achieving suitable blood vessel regeneration while minimizing the risk of thrombosis, intimal hyperplasia, suture retention, and mechanical failure. Silk-based tubular vessels for tissue engineering have been prepared by molding, dipping, electrospinning, or gel spinning, however, further studies are needed to improve the mechanical and blood compatibility properties. In the present study a bilayered vascular graft based on silk fibroin (SF) was developed.
View Article and Find Full Text PDFAs an analog of the main protein contained in nacre regenerated Bombyx mori silk fibroin has a significant influence on the morphology and polymorphic nature of CaCO3 in the biomineralization process. A number of studies have implied that the self-assembling aggregate structure of silk fibroin is a key factor in controlling CaCO3 aggregation. Further insight into this role is necessary with a particular need to prepare silk fibroin aggregates with homogeneous structures to serve as templates for the mineralization process.
View Article and Find Full Text PDFSubstrate mechanical properties have remarkable influences on cell behavior and tissue regeneration. Although salt-leached silk scaffolds have been used in tissue engineering, applications in softer tissue regeneration can be encumbered with excessive stiffness. In the present study, silk-bound water interactions were regulated by controlling processing to allow the preparation of salt-leached porous scaffolds with tunable mechanical properties.
View Article and Find Full Text PDFAlthough natural silk fibers have excellent strength and flexibility, the regenerated silk materials generally become brittle in the dry state. How to reconstruct the flexibility for silk fibroin has bewildered scientists for many years. In the present study, the flexible regenerated silk fibroin films were achieved by simulating the natural forming and spinning process.
View Article and Find Full Text PDFBiomacromolecules
March 2012
Silkworms and spiders generate fibers that exhibit high strength and extensibility. The underlying mechanisms involved in processing silk proteins into fiber form remain incompletely understood, resulting in the failure to fully recapitulate the remarkable properties of native fibers in vitro from regenerated silk solutions. In the present study, the extensibility and high strength of regenerated silks were achieved by mimicking the natural spinning process.
View Article and Find Full Text PDFIn recent studies silk fibroin has been explored as a new material platform for biosensors. Based on these developments, a procedure for the immobilization of antibodies on silk fibroin substrates was developed as a route to functionalizing these biosensor systems. By controlling the conformational transition of the silk fibroin, a primary antibody was immobilized and enriched at the surface of silk fibroin substrates under mild reaction conditions to maintain antibody function.
View Article and Find Full Text PDFControlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research.
View Article and Find Full Text PDFA silk fibroin gel system (e-gel), formed with weak electric fields, has potential utility in medical materials and devices. The mechanism of silk e-gel formation was studied to gain additional insight into the process and control of the material properties. Silk fibroin nanoparticles with sizes of tens of nanometers, composed of metastable conformations, were involved in e-gel formation.
View Article and Find Full Text PDFBesides excellent biocompatibility and biodegradability, a useful tissue engineering scaffold should provide suitable macropores and nanofibrous structure, similar to extracellular matrix (ECM), to induce desired cellular activities and to guide tissue regeneration. In the present study, a mild process to prepare porous and nanofibrous silk-based scaffolds from aqueous solution is described. Using collagen to control the self-assembly of silk, nanofibrous silk scaffolds were firstly achieved through lyophilization.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
August 2010
Eguus asinus is one of the rare Chinese drugs famous for promoting blood circulation. In this experiment, it was employed to modify the silk fibroin (SF) by physical blending. Mouse embryonic fibroblasts NIH-3T3 were seeded on pure and modified SF surfaces.
View Article and Find Full Text PDF