The electrical properties of boron nitride (BN) nanostructures, particularly BN nanotubes (NTs), have been studied less in comparison to the counterpart carbon nanotubes. The present work investigates the field emission (FE) behavior of BNNTs under multiple cycles of FE experiments and demonstrates a strain-engineering pathway to tune the electronic properties of BNNTs. The electrical probing of individual BNNTs were conducted inside a transmission electron microscope (TEM) using an in situ electrical holder capable of applying a bias voltage of up to 110 V.
View Article and Find Full Text PDFOne-dimensional nanostructures such as ZnTe, CdTe, Bi(2)Te(3) and others have attracted much attention in recent years for their potential in thermoelectric devices among other applications. A better understanding of their mechanical properties is important for the design of devices. A combined experimental and computational approach has been used here to investigate the size effects on the Young's modulus of ZnTe nanowires (NWs).
View Article and Find Full Text PDFAs the applications for inorganic nanowires continuously grow, studies on the stability of these structures under high electrical/thermal stress conditions are needed. ZnTe nanowires are grown by the vapor-liquid-solid technique and their breakdown under Joule heating is studied through in situ monitoring in a transmission electron microscope (TEM). The experimental setup, consisting of a scanning tunneling microscope (STM) and a movable piezotube inside the TEM, allows the manipulation of a single nanowire.
View Article and Find Full Text PDFWe report growth and characterization of CdTe wires 30–400 nm in diameter by the vapor–liquid–solid technique. Individual nanowires were placed on a movable piezotube, which allowed three-dimensional motion toward a scanning tunneling microscope (STM). A bias was applied to the STM tip in contact with the nanowire, and the morphological changes due to Joule heating were observed in situ using a transmission electron microscope (TEM) in real time.
View Article and Find Full Text PDFThe recent observation of high flexibility in buckled boron nitride nanotubes (BNNTs) contradicts the pre-existing belief about BN nanotube brittleness due to the partially ionic character of bonding between the B and N atoms. However, the underlying mechanisms and relationships within the nanotube remained unexplored. This study reports for the first time the buckling mechanism in multi-walled BNNTs upon severe mechanical deformation.
View Article and Find Full Text PDF