Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain.
View Article and Find Full Text PDFWe have identified the brain areas involved in Manual Preference (MP) in 143 left-handers (LH) and 144 right-handers (RH). First, we selected the pairs of homotopic regions of interest (hROIs) of the AICHA atlas with significant contralateral activation and asymmetry during the right hand and the left hand Finger-Tapping (FT) both in RH and LH. Thirteen hROIs were selected, including the primary and secondary sensorimotor and premotor cortices, thalamus, dorsal putamen, and cerebellar lobule IV.
View Article and Find Full Text PDFBased on the joint investigation in 287 healthy volunteers (150 left-Handers (LH)) of language task-induced asymmetries and intrinsic connectivity strength of the sentence-processing supramodal network, we show that individuals with atypical rightward language lateralization (N = 30, 25 LH) do not rely on an organization that simply mirrors that of typical leftward lateralized individuals. Actually, the resting-state organization in the atypicals showed that their sentence processing was underpinned by left and right networks both wired for language processing and highly interacting by strong interhemispheric intrinsic connectivity and larger corpus callosum volume. Such a loose hemispheric specialization for language permits the hosting of language in either the left and/or right hemisphere as assessed by a very high incidence of dissociations across various language task-induced asymmetries in this group.
View Article and Find Full Text PDFThe school inclusion of students with autism is still a challenge. To address the cognitive underpinnings of school-related adaptive behaviors, 27 students with autism and 18 students with intellectual and/or severe learning disability, aged from 11 to 17, were recruited. They underwent socio-emotional processing and executive functioning assessments, as well as school-related adaptive behavior and quality of life measurements.
View Article and Find Full Text PDFWe aimed at identifying plurimodal large-scale networks for producing, listening to and reading word lists based on the combined analyses of task-induced activation and resting-state intrinsic connectivity in 144 healthy right-handers. In the first step, we identified the regions in each hemisphere showing joint activation and joint asymmetry during the three tasks. In the left hemisphere, 14 homotopic regions of interest (hROIs) located in the left Rolandic sulcus, precentral gyrus, cingulate gyrus, cuneus and inferior supramarginal gyrus (SMG) met this criterion, and 7 hROIs located in the right hemisphere were located in the preSMA, medial superior frontal gyrus, precuneus and superior temporal sulcus (STS).
View Article and Find Full Text PDFWe herein propose an atlas of 32 sentence-related areas based on a 3-step method combining the analysis of activation and asymmetry during multiple language tasks with hierarchical clustering of resting-state connectivity and graph analyses. 144 healthy right-handers performed fMRI runs based on language production, reading and listening, both with sentences and lists of over-learned words. Sentence minus word-list BOLD contrast and left-minus-right BOLD asymmetry for each task were computed in pairs of homotopic regions of interest (hROIs) from the AICHA atlas.
View Article and Find Full Text PDFWhile the neural network encompassing the processing of the mother tongue (L1) is well defined and has revealed the existence of a bilateral ventral pathway and a left dorsal pathway in which 3 loops have been defined, the question of the processing of a second language (L2) is still a matter of debate. Among variables accounting for the discrepancies in results, the degree of L2 proficiency appears to be one of the main factors. The present study aimed at assessing both pathways in L2, making it possible to determine the degree of mastery of the different speech components (prosody, phonology, semantics and syntax) that are intrinsically embedded within connected speech and that vary according to the degree of proficiency using high degrees of prosodic information.
View Article and Find Full Text PDFBackground: Autism is a neurodevelopmental disorder characterized by a specific triad of symptoms such as abnormalities in social interaction, abnormalities in communication and restricted activities and interests. While verbal autistic subjects may present a correct mastery of the formal aspects of speech, they have difficulties in prosody (music of speech), leading to communication disorders. Few behavioural studies have revealed a prosodic impairment in children with autism, and among the few fMRI studies aiming at assessing the neural network involved in language, none has specifically studied prosodic speech.
View Article and Find Full Text PDFFollowing demand for a prosody assessment procedure, the test Profiling Elements of Prosody in Speech-Communication (PEPS-C), has been translated from English into Spanish, French, Flemish and Norwegian. This provides scope to examine receptive and expressive prosodic ability in Romance (Spanish and French) as well as Germanic (English and Flemish) languages, and includes the possibility of assessing these skills with regard to lexical tone (Norwegian). Cross-linguistic similarities and differences relevant to the translation are considered.
View Article and Find Full Text PDFAutism is characterized by deficits in attention. However, no study has investigated the dynamics of attentional processes in autistic patients yet. The attentional blink (AB) paradigm provides information about the temporal dynamics of attention in particular about the allocation and the duration of an attentional episode.
View Article and Find Full Text PDFEven if speech perception has been reported to involve both left and right hemispheres, converging data have posited the existence of a functional asymmetry at the level of secondary auditory cortices. Using fMRI in 12 right-handed French men listening passively to long connected speech stimuli, we addressed the question of neuronal networks involved in the integration of low frequency bands of speech by comparing 1) differences in brain activity in two listening conditions (FN, NF) differing in the integration of pitch modulations (in FN, low frequencies, obtained by a low-pass filter, are addressed to the left ear while the whole acoustic message is simultaneously addressed to the right ear, NF being the reverse position); 2) differences in brain activity induced by high and low degrees of prosodic expression (expressive vs. flat); and 3) effects of the same connected speech stimulus in the two listening conditions.
View Article and Find Full Text PDFUsing functional Magnetic Resonance Imaging (fMRI) and long connected speech stimuli, we addressed the question of neuronal networks involved in prosodic integration by comparing (1) differences in brain activity when hearing connected speech stimuli with high and low degrees of prosodic expression; (2) differences in brain activity in two different diotic listening conditions (normal speech delivery to both ears, i.e., NN; and low-pass-filtered speech delivery to both ears, i.
View Article and Find Full Text PDF