Publications by authors named "Hesham El-Sherif"

A scalable platform to synthesize ultrathin heavy metals may enable high-efficiency charge-to-spin conversion for next-generation spintronics. Here, we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal that CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls.

View Article and Find Full Text PDF

The layered square-planar nickelates, NdNiO, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in NdNiO thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n = 3 Ruddlesden-Popper compound, NdNiO, and subsequent reduction to the square-planar phase, NdNiO. We synthesize our highest quality NdNiO films under compressive strain on LaAlO (001), while NdNiO on NdGaO (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties.

View Article and Find Full Text PDF

Scalable synthesis of two-dimensional gallium (2D-Ga) covered by graphene layers was recently realized through confinement heteroepitaxy using silicon carbide substrates. However, the thickness, uniformity, and area coverage of the 2D-Ga heterostructures have not previously been studied with high-spatial resolution techniques. In this work, we resolve and measure the 2D-Ga heterostructure thicknesses using scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys.

View Article and Find Full Text PDF

Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next-generation electronic, logic-memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe films with Re atoms via metal-organic chemical vapor deposition is reported.

View Article and Find Full Text PDF

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.

View Article and Find Full Text PDF

Here the novel direct heteroepitaxial growth method of a 3D heteroepitaxial system is demonstrated on a 3D substrate, CdTe (111)/Al O (0001), which forms a spontaneous vdW-like bond at the interface, instead of the two 3D crystals being strongly bound. Despite a large lattice mismatch, the thin films are single crystals and maintain high quality due the compliance of the interface which accommodates strain. This weak bonding interface is accomplished by the self-assembly of a pseudomorphic chalcogenide layer on the sapphire surface during growth.

View Article and Find Full Text PDF

Developing novel antimicrobials capable of controlling multidrug-resistant bacterial pathogens is essential to restrict the use of antibiotics. Bacteriophages (phages) constitute a major resource that can be harnessed as an alternative to traditional antimicrobial therapies. Phage ZCSE2 was isolated among several others from raw sewage but was distinguished by broad-spectrum activity against serovars considered pathogenic to humans and animals.

View Article and Find Full Text PDF