Dysequilibrium syndrome is a genetically heterogeneous condition that combines autosomal recessive, nonprogressive cerebellar ataxia with mental retardation. Here, we report the first patient heterozygous for 2 novel mutations in VLDLR. An 18-month-old girl presented with significant hypotonia, global developmental delay, and truncal and peripheral ataxia.
View Article and Find Full Text PDFIn the course of autoimmune CNS inflammation, inflammatory infiltrates form characteristic perivascular lymphocyte cuffs by mechanisms that are not yet well understood. Here, intravital two-photon imaging of the brain in anesthetized mice, with experimental autoimmune encephalomyelitis, revealed the highly dynamic nature of perivascular immune cells, refuting suggestions that vessel cuffs are the result of limited lymphocyte motility in the CNS. On the contrary, vessel-associated lymphocyte motility is an actively promoted mechanism which can be blocked by CXCR4 antagonism.
View Article and Find Full Text PDFThe extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars.
View Article and Find Full Text PDFInflammation is a potentially self-destructive process that needs tight control. We have identified a nuclear signaling mechanism through which the low-density lipoprotein receptor-related protein 1 (LRP1) limits transcription of lipopolysaccharide (LPS)-inducible genes. LPS increases the proteolytic processing of the ectodomain of LRP1, which results in the gamma-secretase-dependent release of the LRP1 intracellular domain (ICD) from the plasma membrane and its translocation to the nucleus, where it binds to and represses the interferon-gamma promoter.
View Article and Find Full Text PDFLipoprotein receptors are evolutionarily ancient proteins that are expressed on the surface of many cell types. Beginning with the appearance of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors evolved. Originally, these cell surface proteins were thought to merely mediate the traffic of lipids and nutrients between cells and, in some cases, by functioning as scavenger receptors, remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular space and the cell surface.
View Article and Find Full Text PDFApolipoprotein E receptor 2 (Apoer2) is a multifunctional transport and signaling receptor that regulates the uptake of selenium into the mouse brain and testis through endocytosis of selenoprotein P (Sepp1). Mice deficient in Apoer2 or Sepp1 are infertile, with kinked and hypomotile spermatozoa. They also develop severe neurological defects on a low selenium diet, due to a profound impairment of selenium uptake.
View Article and Find Full Text PDFThe low-density lipoprotein receptor-related protein LRP1 is a cell surface receptor with functions in diverse physiological pathways, including lipid metabolism. Here we show that LRP1-deficient fibroblasts accumulate high levels of intracellular cholesterol and cholesteryl-ester when stimulated for adipocyte differentiation. We demonstrate that LRP1 stimulates a canonical Wnt5a signaling pathway that prevents cholesterol accumulation.
View Article and Find Full Text PDFCell Microbiol
September 2008
The acid sphingomyelinase (ASMase) localizes to the lumen of endosomes, phagosomes and lysosomes as well as to the outer leaflet of the plasma membrane and hydrolyses sphingomyelin to ceramide and phosphorylcholine. Using the facultative intracellular bacterium Listeria monocytogenes, we show that maturation of phagosomes into phagolysosomes is severely impaired in macrophages genetically deficient for ASMase. Unlike in wild-type macrophages, phagosomes containing L.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2008
Background: Nitric oxide (NO) is of crucial importance for smooth muscle cell (SMC) function and exerts numerous, and sometimes opposing, effects on vascular restenosis. Although cGMP-dependent protein kinase type I (cGKI) is a principal effector of NO, the molecular pathway of vascular NO signaling in restenosis is unclear. The purpose of this study was to examine the functional role of the smooth muscle cGMP/cGKI signaling cascade in restenosis of vessels.
View Article and Find Full Text PDFAcid sphingomyelinase (ASMase) has been implemented in cellular signaling mainly because its reaction product, ceramide, has been assumed to be a mediator within signaling pathways. Our studies of three independent infection systems show that ASMase is required for phago-lysosomal fusion in macrophages infected with Listeria monocytogenes, for exocytosis of secretory lysosomes by lymphocytic choriomeningitis virus-specific cytotoxic T cells, and for generation of multinucleated giant cells in granuloma of mice infected with Mycobacterium avium. Because of its neutral lipid nature, ceramide is confined to the membranes of phagosomes and lysosomes or the extracellular leaflet of the plasma membrane.
View Article and Find Full Text PDFThe adult cerebellar cortex is comprised of reproducible arrays of transverse zones and parasagittal stripes of Purkinje cells. Adult stripes are created through the perinatal rostrocaudal dispersion of embryonic Purkinje cell clusters, triggered by signaling through the Reelin pathway. Reelin is secreted by neurons in the external granular layer and deep cerebellar nuclei and binds to two high affinity extracellular receptors on Purkinje cells-the Very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (Apoer2).
View Article and Find Full Text PDFThe reeler gene encodes Reelin, a secreted glycoprotein that binds to the very-low-density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (Apoer 2), and induces Src- and Fyn-mediated tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This Reelin-Dab1 signaling pathway regulates neuronal positioning during development. A second Reelin pathway acts through Apoer 2-exon 19 to modulate synaptic plasticity in adult mice.
View Article and Find Full Text PDFUnderstanding the immune response in the central nervous system (CNS) is crucial for the development of new therapeutic concepts in chronic neuroinflammation, which differs considerably from other autoimmune diseases. Special immunologic properties of inflammatory processes in the CNS, which is often referred to as an immune privileged site, imply distinct features of CNS autoimmune disease in terms of disease initiation, perpetuation, and therapeutic accessibility. Furthermore, the CNS is a stress-sensitive organ with a low capacity for self-renewal and is highly prone to bystander damage caused by CNS inflammation.
View Article and Find Full Text PDFDiet-induced obesity and its serious consequences such as diabetes, cardiovascular disease, and cancer are rapidly becoming a major global health threat. Therefore, understanding the cellular and molecular mechanisms by which dietary fat causes obesity and diabetes is of paramount importance in order to identify preventive and therapeutic strategies. Increased dietary fat intake results in high plasma levels of triglyceride-rich lipoproteins (TGRL).
View Article and Find Full Text PDFRho GTPases orchestrate signaling pathways leading to cell migration. Their function depends on GTP loading and isoprenylation by geranylgeranyl pyrophosphate (GGpp). In this study, we show that in human T cells, geranylgeranylation-and not GTP loading-is necessary for RhoA-mediated downstream events.
View Article and Find Full Text PDFMutations in the amyloid precursor protein (APP) cause early-onset Alzheimer's disease (AD), but the only genetic risk factor for late-onset AD is the varepsilon4 allele of apolipoprotein E (apoE), a major cholesterol carrier. Using Cre-lox conditional knockout mice, we demonstrate that lipoprotein receptor LRP1 expression regulates apoE and cholesterol levels within the CNS. We also found that deletion of APP and its homolog APLP2, or components of the gamma-secretase complex, significantly enhanced the expression and function of LRP1, which was reversed by forced expression of the APP intracellular domain (AICD).
View Article and Find Full Text PDFBackground: The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-beta in vascular smooth muscle cells (VSMC). LRP1 is also a receptor for TGFbeta1 and is required for TGFbeta mediated inhibition of cell proliferation.
Methods And Principal Findings: We show that loss of LRP1 in VSMC (smLRP(-)) in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFbeta target genes thrombospondin-1 (TSP1) and PDGFRbeta in the vascular wall.
Intraurethral procedures such as the transurethral resection of the prostate can generate detrusor overactivity and bladder irritability. The rabbit model of detrusor overactivity has proven to be an excellent model to study the effects of drugs on detrusor overactivity. Using this model, we evaluated the responses to intravesical ketoprofen.
View Article and Find Full Text PDFReelin is an extracellular protein that directs the organization of cortical structures of the brain through the activation of two receptors, the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2), and the phosphorylation of Disabled-1 (Dab1). Lis1, the product of the Pafah1b1 gene, is a component of the brain platelet-activating factor acetylhydrolase 1b (Pafah1b) complex, and binds to phosphorylated Dab1 in response to Reelin. Here we investigated the involvement of the whole Pafah1b complex in Reelin signaling and cortical layer formation and found that catalytic subunits of the Pafah1b complex, Pafah1b2 and Pafah1b3, specifically bind to the NPxYL sequence of VLDLR, but not to ApoER2.
View Article and Find Full Text PDFHandb Exp Pharmacol
January 2007
The advent of technologies that allow conditional mutagenesis has revolutionized our ability to explore gene functions and to establish animal models of human diseases. Both aspects have proven to be of particular importance in the study of lipid-related disorders. Classical approaches to gene inactivation by conventional gene targeting strategies have been successfully applied to generate animal models like the LDL receptor- and the apolipoprotein E-knockout mice, which are still widely used to study diverse aspects of atherosclerosis, lipid transport, and neurodegenerative disease.
View Article and Find Full Text PDFGenetic defects in LDL clearance result in severe hypercholesterolemia and premature atherosclerosis. Mutations in the LDL receptor (LDLR) cause familial hypercholesterolemia (FH), the most severe form of genetic hypercholesterolemia. A phenocopy of FH, autosomal recessive hypercholesterolemia (ARH), is due to mutations in an adaptor protein involved in LDLR internalization.
View Article and Find Full Text PDFA central pathogenic feature of neurodegenerative diseases and neurotrauma is the death of neurons. A mechanistic understanding of the factors and conditions that induce the dysfunction and death of neurons is essential for devising effective treatment strategies against neuronal loss after trauma or during aging. Because Apolipoprotein E (ApoE) is a major risk factor for several neurodegenerative diseases, including Alzheimer's disease , a direct or indirect role of ApoE receptors in the disease process is likely.
View Article and Find Full Text PDFApolipoprotein E (APOE) is a cholesterol transport protein and an isoform-specific major risk factor for neurodegenerative diseases. The lipoprotein receptors that bind APOE have recently been recognized as pivotal components of the neuronal signalling machinery. The interaction between APOE receptors and one of their ligands, reelin, allows them to function directly as signal transduction receptors at the plasma membrane to control not only neuronal positioning during brain development, but also synaptic plasticity in the adult brain.
View Article and Find Full Text PDF