Publications by authors named "Herwig Wendt"

Because drowsiness is a major cause in vehicle accidents, its automated detection is critical. Scale-free temporal dynamics is known to be typical of physiological and body rhythms. The present work quantifies the benefits of applying a recent and original multivariate selfsimilarity analysis to several modalities of polysomnographic measurements (heart rate, blood pressure, electroencephalogram and respiration), from the MIT-BIH Polysomnographic Database, to better classify drowsiness-related sleep stages.

View Article and Find Full Text PDF

The study of functional brain-heart interplay has provided meaningful insights in cardiology and neuroscience. Regarding biosignal processing, this interplay involves predominantly neural and heartbeat linear dynamics expressed via time and frequency domain-related features. However, the dynamics of central and autonomous nervous systems show nonlinear and multifractal behaviours, and the extent to which this behaviour influences brain-heart interactions is currently unknown.

View Article and Find Full Text PDF

The analysis of human brain functional networks is achieved by computing functional connectivity indices reflecting phase coupling and interactions between remote brain regions. In magneto- and electroencephalography, the most frequently used functional connectivity indices are constructed based on Fourier-based cross-spectral estimation applied to specific fast and band-limited oscillatory regimes. Recently, infraslow arrhythmic fluctuations (below the 1 Hz) were recognized as playing a leading role in spontaneous brain activity.

View Article and Find Full Text PDF

Recently, self-supervised learning has proved to be effective to learn representations of events suitable for temporal segmentation in image sequences, where events are understood as sets of temporally adjacent images that are semantically perceived as a whole. However, although this approach does not require expensive manual annotations, it is data hungry and suffers from domain adaptation problems. As an alternative, in this work, we propose a novel approach for learning event representations named Dynamic Graph Embedding (DGE).

View Article and Find Full Text PDF

Quantification of brain-heart interplay (BHI) has mainly been performed in the time and frequency domains. However, such functional interactions are likely to involve nonlinear dynamics associated with the two systems. To this extent, in this preliminary study we investigate the functional coupling between multifractal properties of Electroencephalography (EEG) and Heart Rate Variability (HRV) series using a channel- and time scale-wise maximal information coefficient analysis.

View Article and Find Full Text PDF

Multifractal analysis, that quantifies the fluctuations of regularities in time series or textures, has become a standard signal/image processing tool. It has been successfully used in a large variety of applicative contexts. Yet, successes are confined to the analysis of one signal or image at a time (univariate analysis).

View Article and Find Full Text PDF

Multifractal analysis of human heartbeat dynamics has been demonstrated to provide promising markers of Congestive Heart Failure (CHF). Yet, it crucially builds on the interpolation of RR intervals series, which has been generically performed with limited links to CHF pathophysiology. We devise a novel methodology estimating multifractal autonomic dynamics from heartbeat-derived series defined in the continuous time.

View Article and Find Full Text PDF

Objective: Numerous indices were devised for the statistical characterization of temporal dynamics of heart rate variability (HRV) with the aim to discriminate between healthy subjects and nonhealthy patients. Elaborating on the concepts of (multi)fractal and nonlinear analyses, the present contribution defines and studies formally novel non Gaussian multiscale representations.

Methods: A methodological framework for non Gaussian multiscale representations constructed on wavelet p-leaders is developed, relying a priori neither on exact scale-free dynamics nor on predefined forms of departure from Gaussianity.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is an identified risk factor for ischemic strokes (IS). AF causes a loss in atrial contractile function that favors the formation of thrombi, and thus increases the risk of stroke. Also, AF produces highly irregular and complex temporal dynamics in ventricular response RR intervals.

View Article and Find Full Text PDF

Scale-free dynamics is nowadays a massively used paradigm to model infraslow macroscopic brain activity. Multifractal analysis is becoming the standard tool to characterize scale-free dynamics. It is commonly used on various modalities of neuroimaging data to evaluate whether arrhythmic fluctuations in ongoing or evoked brain activity are related to pathologies (Alzheimer, epilepsy) or task performance.

View Article and Find Full Text PDF

Texture characterization is a central element in many image processing applications. Multifractal analysis is a useful signal and image processing tool, yet, the accurate estimation of multifractal parameters for image texture remains a challenge. This is due in the main to the fact that current estimation procedures consist of performing linear regressions across frequency scales of the 2D dyadic wavelet transform, for which only a few such scales are computable for images.

View Article and Find Full Text PDF