Publications by authors named "Herwig G Paretzke"

Background: The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body).

View Article and Find Full Text PDF

In the present work, a systematic analysis of the impact of spatial and temporal proximity of ion tracks on the yield of higher-order radiolytic species as well as of DNA damage patterns is presented. This potential impact may be of concern when laser-driven particle accelerators are used for ion radiation therapy. The biophysical Monte Carlo track structure code PARTRAC was used and, to this end, extended in two aspects: first, the temporal information about track evolution has been included in the track structure module and, second, the simulation code has been modified to enable parallel multiple track processing during simulation of subsequent modelling stages.

View Article and Find Full Text PDF

Time-dependent yields of the most important products of water radiolysis E(aq)(-), (*)OH, H(*), H(3)O(+), H(2), OH(-) and H(2)O(2) have been calculated for (60)Co-photons, electrons, protons, helium- and carbon-ions incident onto water. G values have been evaluated for the interval from 1 ps to 1 mus after initial energy deposition as a function of time, as well as after 1 ns and at the end of the chemical stage as a function of linear energy transfer (LET), covering an interval from approximately 0.2 up to 750 keV/microm by means of different particle types.

View Article and Find Full Text PDF

For the understanding of radiation action on biological systems like cellular macromolecules (e.g., DNA in its higher structures) a synergistic approach of experiments and quantitative modelling of working hypotheses is necessary.

View Article and Find Full Text PDF

The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 ((210)Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of (210)Po was monitored.

View Article and Find Full Text PDF

The biophysical simulation code PARTRAC was extended by a module to handle ions heavier than alpha particles. Cross sections for ion-electron interactions were taken from He(++) ions of the same velocity and scaled by Z(eff(2))/4. Calculated linear energy transfer values, radial dose distributions and secondary electron spectra were found in agreement with experimental results.

View Article and Find Full Text PDF

Radiocaesium is one of the main anthropogenic sources of internal and external exposure to beta- and gamma-radiation (e.g. from global fallout of atmospheric atomic bomb testing and from the Chernobyl reactor accident).

View Article and Find Full Text PDF

Background And Purpose: Theoretical models and Monte Carlo simulations were developed, aimed to investigate the role played by the organisation of interphase DNA and the environmental scavenging capacity conditions in the induction of radiobiological damage.

Methods: The induction of single- and double-strand breaks by gamma rays impinging on different DNA structures (e.g.

View Article and Find Full Text PDF

Uranium is a naturally occurring primordial radioactive element. Small amounts found in air, water, and food are regularly consumed and inhaled by humans. Even the military, medical, and industrial use of depleted uranium can affect humans.

View Article and Find Full Text PDF

* Excessive caesium can be toxic to plants. Here we investigated Cs uptake and caesium-induced gene expression in Arabidopsis thaliana. * Accumulation was measured in plants grown for 5 wk on agar supplemented with nontoxic and up to toxic levels of Cs.

View Article and Find Full Text PDF

The influence of relaxations of atoms making up the DNA and atoms attached to it on radiation-induced cellular DNA damage by photons was studied by very detailed Monte Carlo track structure calculations, as an unusually high importance of inner shell ionizations for biological action was suspected from reports in the literature. For our calculations cross sections for photons and electrons for inner shell orbitals were newly derived and integrated into the biophysical track structure simulation programme PARTRAC. Both the local energy deposition in a small sphere around the interacting relaxed atom, and the number of relaxations per Gy and Gbp were calculated for several target geometries and many monoenergetic photon irradiations.

View Article and Find Full Text PDF

Within the track structure code PARTRAC, DNA strand break induction by direct and indirect radiation action was calculated for the E. coli catabolite gene activator protein (CAP) DNA complex with (125)I located at the position of the H(5) atom of the cytosine near the center. The shape of the resulting DNA fragment size distributions was found to be in reasonable agreement with corresponding experimental results.

View Article and Find Full Text PDF

The biophysical radiation track simulation model PARTRAC was improved by implementing new interaction cross sections for protons in water. Computer-simulated tracks of energy deposition events from protons and their secondary electrons were superimposed on a higher-order DNA target model describing the spatial coordinates of the whole genome inside a human cell. Induction of DNA double-strand breaks was simulated for proton irradiation with LET values between 1.

View Article and Find Full Text PDF

The analyses in this paper show that a number of biologically based models describe cancer incidence among the A-bomb survivors equally well. However, these different models can predict very different temporal patterns of risk after irradiation. No evidence was found to support the previous claim of Pierce and Mendelsohn that excess cancer risks for the solid tumors depend only upon attained age and not on age at exposure or time since exposure.

View Article and Find Full Text PDF