Publications by authors named "Hervieu G"

A strategy of systematically targeting more rigid analogues of the known MCH R1 receptor antagonist, SB-568849, serendipitously uncovered a binding mode accessible to N-aryl-phthalimide ligands. Optimisation to improve the stability of this compound class led to the discovery of novel N-aryl-quinazolinones, benzotriazinones and thienopyrimidinones as selective ligands with good affinity for human melanin-concentrating hormone receptor 1.

View Article and Find Full Text PDF

We report here the discovery of a class of MCH R1 ligands based on a biphenyl carboxamide template. A docked-in model is presented indicating key interactions in the putative binding site of the receptor. Parallel high throughput synthetic techniques were utilised to allow rapid exploration of the structure-activity relationship around this template, leading to compound SB-568849 which possessed good receptor affinity and selectivity.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents.

View Article and Find Full Text PDF

The human 7-transmembrane receptor GPR7 has sequence similarity to opioid and somatostatin receptors, and can be activated by the recently discovered neuropeptides NPB and NPW. This receptor is highly expressed in the nervous system, with suggested roles in neuroendocrine events and pain signaling. In this study, we investigated whether the GPR7 receptor is expressed in the peripheral nervous system under normal and pathological conditions.

View Article and Find Full Text PDF

Several psychiatric diseases, including schizophrenia, are thought to have a developmental aetiology, but to date no clear link has been made between psychiatric disease and a specific developmental process. LPA(1) is a G(i)-coupled seven transmembrane receptor with high affinity for lysophosphatidic acid. Although LPA(1) is expressed in several peripheral tissues, in the nervous system it shows relatively restricted temporal expression to neuroepithelia during CNS development and to myelinating glia in the adult.

View Article and Find Full Text PDF

The peptide hormone ghrelin is known to be present within stomach and, to a lesser extent, elsewhere in gut. Although reports suggest that gastric function may be modulated by ghrelin acting via the vagus nerve, the gastrointestinal distribution and functions of its receptor, the growth hormone secretagogue receptor (GHS-R), are not clear and may show signs of species-dependency. This study sought to determine the cellular localisation and distribution of GHS-R-immunoreactivity (-Ir) using immunofluorescent histochemistry and explore the function of ghrelin in both human and rat isolated gastric and/or colonic circular muscle preparations in which nerve-mediated responses were evoked by electrical field stimulation.

View Article and Find Full Text PDF

Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, which centrally regulates food intake and stress. MCH induces food intake in rodents and, more generally, acts as an anabolic signal in energy regulation. In addition, MCH seems to be activatory on the stress axis.

View Article and Find Full Text PDF

Apelin peptides have recently been identified to be the endogenous ligands for the G protein-coupled receptor APJ. However, little is known about the physiological roles of this ligand-receptor pairing. In the present study we investigated the pharmacology of several apelin analogues at the human recombinant APJ receptor using radioligand binding and functional assays.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is implicated in the control of a number of hormonal axes including the hypothalamic-pituitary adrenal (HPA) axis. Previous studies have shown that there is evidence for both a stimulatory and an inhibitory action on the HPA axis; therefore, we attempted to further characterize the effects of MCH on this axis. Intracerebroventricular injection of MCH increased circulating adrenocorticotropic hormone (ACTH) at 10 min post injection.

View Article and Find Full Text PDF

The neuropeptides orexin-A and orexin-B are produced in neurons of the lateral hypothalamic area and have been implicated to be involved in the regulation of food/water intake and sleep-wake control. The orexins act at two different G-protein-coupled orexin receptors (OX-R1 and OX-R2) that are derived from separate genes and expressed differentially throughout the central nervous system. In the present study, we have used a polyclonal antipeptide antiserum to analyse in detail the distribution of OX-R1-immunoreactive neurons in the rat hypothalamus.

View Article and Find Full Text PDF

Orexin-A and -B are neuropeptides mainly expressed in the lateral hypothalamic area (LHA). A role for orexins was first demonstrated in the regulation of feeding behaviour. Subsequently, the peptides have been implicated in the control of arousal.

View Article and Find Full Text PDF

TREK-1 is a member of the two-pore-domain potassium channel family which is expressed predominantly in the CNS. Using an anti-peptide polyclonal antiserum, we have determined the distribution of TREK-1 in the brain and spinal cord of adult rats. Specificity of the antiserum was tested using a TREK-1-transfected cell line and confirmed with c-myc-tagged TREK-1.

View Article and Find Full Text PDF

Orexins-A and -B are neuropeptides derived from a single precursor prepro-orexin. The mature peptides are mainly expressed in the lateral hypothalamic and perifornical areas. The orexins have been implicated in the control of arousal and appear to be important messengers in the regulation of food intake.

View Article and Find Full Text PDF

Uridine 5'-diphosphoglucose (UDP-glucose) has a well established biochemical role as a glycosyl donor in the enzymatic biosynthesis of carbohydrates. It is less well known that UDP-glucose may possess pharmacological activity, suggesting that a receptor for this molecule may exist. Here, we show that UDP-glucose, and some closely related molecules, potently activate the orphan G protein-coupled receptor KIAA0001 heterologously expressed in yeast or mammalian cells.

View Article and Find Full Text PDF

GABA(B) receptors are G-protein-coupled receptors that mediate the slow and prolonged synaptic actions of GABA in the CNS via the modulation of ion channels. Unusually, GABA(B) receptors form functional heterodimers composed of GABA(B1) and GABA(B2) subunits. The GABA(B1) subunit is essential for ligand binding, whereas the GABA(B2) subunit is essential for functional expression of the receptor dimer at the cell surface.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a hypothalamic orexigenic peptide. Recently, an orphan G-protein-coupled receptor (SLC-1) was identified that binds MCH with high affinity. Here, we demonstrate the mRNA expression of this receptor in insulin-producing cells including CRI-G1 and RINm5F cells, and in rat islets of Langerhans.

View Article and Find Full Text PDF
Article Synopsis
  • Melanin-concentrating hormone (MCH) is a peptide located in the hypothalamus that influences arousal, goal-oriented behaviors, and food intake regulation in mammals.
  • Recent research identified the G-protein-coupled receptor SLC-1 as the receptor for MCH, enabling further exploration of its biological functions.
  • SLC-1 is widely expressed throughout the brain and its location corresponds with known MCH effects, suggesting its role in various physiological actions like stress response and learning.
View Article and Find Full Text PDF

Somatostatin actions are mediated through G-protein coupled receptors named sst(1) to sst(5). We used an affinity-purified polyclonal antibody AS-69, directed against a specific N-terminal peptide sequence of sst(3) to determine the immunohistochemical distribution of the sst(3) receptor in the rat and human brain. The specificity of the antibody was shown by Western blotting experiments using an N-terminal sst(3) fusion protein.

View Article and Find Full Text PDF

The underlying causes of obesity are poorly understood but probably involve complex interactions between many neurotransmitter and neuropeptide systems involved in the regulation of food intake and energy balance. Three pieces of evidence indicate that the neuropeptide melanin-concentrating hormone (MCH) is an important component of this system. First, MCH stimulates feeding when injected directly into rat brains; second, the messenger RNA for the MCH precursor is upregulated in the hypothalamus of genetically obese mice and in fasted animals; and third, mice lacking MCH eat less and are lean.

View Article and Find Full Text PDF

Melanin concentrating hormone (MCH) and neuropeptide EI (NEI) are two peptides produced from the same precursor in mammals, by cleavage at the Arg145-Arg146 site and the Lys129-Arg130 site, respectively. We performed co-localization studies to reveal simultaneously the expression of MCH mRNA and proconvertases (PCs) such as PC1/3 or PC2. In the rat hypothalamus, PC2 was present in all MCH neurons, and PC1/3 was present in about 15-20% of these cells.

View Article and Find Full Text PDF

Using gold-labelled somatostatin, somatostatin binding sites were predominantly found in laminae I-III, X and on motorneurones of the rat lumbar spinal cord. A comparison with immunohistochemical staining using antisera against somatostatin receptor sequences revealed that the marked binding in laminae I-III coincided with the presence of somatostatin receptor-like immunoreactivity for the receptor subtypes 1, 2 and 3. Binding sites on motorneurones were only paralleled by an immunoreaction for subtype 3.

View Article and Find Full Text PDF

The biological actions of the neuropeptides somatostatin-14 and -28 are receptor-mediated. To date, five G protein-coupled receptors sst1 to sst5 have been characterised pharmacologically and their genes have been cloned. In this study, we used an affinity-purified polyclonal antibody (AS-68) raised against a specific N-terminal peptide sequence of sst2 to localise N-terminal sst2-immunoreactive regions in the rat brain and the cervical spinal cord.

View Article and Find Full Text PDF

The biological actions of somatostatin are mediated via a family of G protein-coupled receptors named sst1 to sst5. We used an affinity-purified polyclonal antibody AS-65, directed against a specific N-terminal peptide sequence of sst1 to determine the immunohistochemical distribution of N-terminal sst1 immunoreactivity in the rat brain. The specificity of the antibody was shown by western blotting experiments using an N-terminal sst1 fusion protein.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a cyclic peptide predominantly expressed in the hypothalamus of mammals. This peptide modulates the stress response and regulates many goal-oriented behaviors in the rat brain. MCH mRNA and peptides generated from the precursor, namely MCH and neuropeptide (N) glutamic acid (E) isoleucine (I) amide (NEI), were also found in rodent peripheral tissues including those in adult testis.

View Article and Find Full Text PDF