Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs.
View Article and Find Full Text PDFDespite their numerous possible applications, the potential impact of carbon engineered nanomaterials (CEN) on human health, especially after inhalation exposure, is still questioned. Quantification of CEN in the respiratory system is a recurring issue and deposition and pulmonary biopersistence data are essential for toxicological evaluation. In this context, a fully validated standard method for CEN quantification in lung tissue is therefore imperative.
View Article and Find Full Text PDFBackground: Carbon disulfide (CS) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS exposure.
Methods: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS.
Hexavalent chromium (Cr(VI)) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and plasma attest to the last few hours of total chromium exposure (all oxidation states of chromium), chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure over the last few days. Before recommending Cr in RBC (CrIE) as a biological indicator of Cr(VI) exposure, in vivo studies must be undertaken to assess its reliability.
View Article and Find Full Text PDFVolatile organic solvents are frequently present in industrial atmospheres. Their lipophilic properties mean they quickly reach the brain following inhalation. Acute exposure to some solvents perturbs the middle ear reflex, which could jeopardize cochlear protection against loud noises.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods.
View Article and Find Full Text PDFThe number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches.
View Article and Find Full Text PDFChronic occupational exposure to carbon disulfide (CS2) has debilitating motor and sensory effects in humans, which can increase the risk of falls. Although no mention of vestibulotoxic effects is contained in the literature, epidemiological and experimental data suggest that CS2 could cause low-frequency hearing loss when associated with noise exposure. Low-frequency noise might also perturb the peripheral balance receptor through an as-yet unclear mechanism.
View Article and Find Full Text PDF1. Multiple exposures are ubiquitous in industrial environments. In this article, we highlight the risks faced by workers and complete the data available on the metabolic impact of a common mixture: toluene (TOL) and methylethylketone (MEK).
View Article and Find Full Text PDFCarbon disulfide (CS) is used in industry; it has been shown to have neurotoxic effects, causing central and distal axonopathies.However, it is not considered cochleotoxic as it does not affect hair cells in the organ of Corti, and the only auditory effects reported in the literature were confined to the low-frequency region. No reports on the effects of combined exposure to low-frequency noise and CS have been published to date.
View Article and Find Full Text PDFMethylethylketone (MEK) is widely used in industry, often in combination with other compounds. Although nontoxic, it can make other chemicals harmful. This study investigates the fate of MEK in rat blood, brain and urine as well as its hepatic metabolism following inhalation over 1 month (at 20, 200 or 1400 ppm).
View Article and Find Full Text PDFOccupational noise can damage workers' hearing, and the phenomenon is even more dangerous when noise is associated with an ototoxic solvent. Aromatic solvents are known to provoke chemical-induced hearing loss, but little is known about the effects on hearing of carbon disulfide (CS) when combined with noise. Co-exposure to CS and noise may have a harmful effect on hearing, but the mechanisms involved are not well understood.
View Article and Find Full Text PDFSome volatile aromatic solvents have similar or opposite effects to anesthetics in the central nervous system. Like for anesthetics, the mechanisms of action involved are currently the subject of debate. This paper presents an in vivo study to determine whether direct binding or effects on membrane fluidity best explain how solvents counterbalance anesthesia's depression of the middle-ear reflex (MER).
View Article and Find Full Text PDF1. Toluene (TOL) is widely used in industry. Occupational exposure to TOL is commonly assessed using TOL in blood, hippuric acid and ortho-cresol.
View Article and Find Full Text PDFFluorene is one of the most abundant polycyclic aromatic hydrocarbons in air and may contribute to the neurobehavioral alterations induced by the environmental exposure of humans to PAHs. Since no data are available on fluorene neurotoxicity, this study was conducted in adult rats to assess the behavioral toxicity of repeated fluorene inhalation exposure. Male rats (n = 18/group) were exposed nose-only to 1.
View Article and Find Full Text PDF1. Toluene (TOL) is a neurotoxic, ototoxic and reprotoxic solvent which is metabolized via the glutathione pathway, producing benzylmercapturic, o-, m- and p-toluylmercapturic acids (MAs). These metabolites could be useful as biomarkers of TOL exposure.
View Article and Find Full Text PDFThe mechanisms of action involved in the neurotoxicity of solvents are poorly understood. In vitro studies have suggested that the effects of some solvents might be due to the formation of reactive oxygen species (ROS). This study assesses hydroxyl radical (OH) generation and measures malondialdehyde (MDA) levels in the cerebral tissue of rats exposed to six solvents (n-hexane, n-octane, toluene, n-butylbenzene, cyclohexane and 1,2,4-trimethylcyclohexane).
View Article and Find Full Text PDFToluene (Tol) is an organic solvent widely used in the industry. It is also abused as an inhaled solvent, and can have deleterious effects on hearing. Recently, it was demonstrated that Tol has both anticholinergic and antiglutamatergic effects, and that it also inhibits voltage-dependent Ca(2+) channels.
View Article and Find Full Text PDFThe cytogenetic alterations in leukocytes and the increased risk for leukemia, lymphoma, or all lymphohematopoietic cancer observed in workers occupationally exposed to styrene have been associated with its hepatic metabolisation into styrene-7,8-oxide, an epoxide which can induce DNA damages. However, it has been observed that styrene-7,8-oxide was also found in the atmosphere of reinforced plastic industries where large amounts of styrene are used. Since the main route of exposure to these compounds is inhalation, in order to gain new insights regarding their systemic genotoxicity, Fisher 344 male rats were exposed in full-body inhalation chambers, 6 h/day, 5 days/week for 4 weeks to styrene-7,8-oxide (25, 50, and 75 ppm) or styrene (75, 300, and 1000 ppm).
View Article and Find Full Text PDFA convenient and reliable gas chromatographic method was developed for the simultaneous determination of six aromatic acid metabolites of styrene and styrene-oxide in rat urine; i.e., benzoic (BA), phenylacetic (PAA), mandelic (MA), phenylglyoxylic (PGA), hippuric (HA) and phenylaceturic (PAUA) acids.
View Article and Find Full Text PDFGlutathione pathway was specifically studied in rats exposed by inhalation to a range of ethylbenzene vapours (5-2000 ppm). Urines were collected during exposure (6h) and over the 18 h following the exposure. The potential metabolites coming from either side-chain or ring oxidation were synthesized: 1-, 2-phenylethylmercapturic acids (1-, and 2-PEMA) and 2-, 3- and 4-ethylphenylmercapturic acids (2-, 3-, and 4-EPMA).
View Article and Find Full Text PDFExposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology.
View Article and Find Full Text PDFRoad paving workers are exposed to bitumen fumes (CAS No. 8052-42-4), a complex mixture of volatile compounds and particles containing carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons. However, epidemiological and experimental animal studies failed to draw unambiguous conclusions concerning their toxicity.
View Article and Find Full Text PDFThe expiratory bradypnoea indicative of upper airway irritation in mice was evaluated during a period of 60 min of nasal exposure to methyl-2-cyanoacrylate, ethyl-2-cyanoacrylate, isopropyl-2-cyanoacrylate and 2-methoxyethyl-2-cyanoacrylate vapors using nose only exposure. Irritation of the upper respiratory tract caused a concentration-dependent decrease in the respiratory rate. The maximum effect occurred within the first 10 min of exposure and was followed by a drop-off in the response during the remainder of the exposure period.
View Article and Find Full Text PDF