Antibodies play a pivotal role in protecting from SARS-CoV-2 infection, but their efficacy is challenged by the continuous emergence of viral variants. In this study, we describe two broadly neutralizing antibodies cloned from the memory B cells of a single convalescent individual after infection with ancestral SARS-CoV-2. Cv2.
View Article and Find Full Text PDFThe passage of antibodies through the blood-brain barrier (BBB) and the blood-tumoral barrier (BTB) is determinant not only to increase the immune checkpoint inhibitors efficacy but also to monitor prognostic and predictive biomarkers such as the programmed death ligand 1 (PD-L1) via immunoPET. Although the involvement of neonatal Fc receptor (FcRn) in antibody distribution has been demonstrated, its function at the BBB remains controversial, while it is unknown at the BTB. In this context, we assessed FcRn's role by pharmacokinetic immunoPET imaging combined with focused ultrasounds (FUS) using unmodified and FcRn low-affinity IgGs targeting PD-L1 in a preclinical orthotopic glioblastoma model.
View Article and Find Full Text PDFBiomolecules labeled with positron-emitting radionuclides like fluorine-18 or radiometals like copper-64 and zirconium-89 are increasingly employed in nuclear medicine for diagnosis purposes. Given the fragility and complexity of these compounds, their labeling requires mild conditions. Besides, it is essential to develop methods inducing minimal modification of the tertiary structure, as it is fundamental for the biological activity of such complex entities.
View Article and Find Full Text PDFDelineating the precise regions on an antigen that are targeted by antibodies has become a key step for the development of antibody therapeutics. X-ray crystallography and cryogenic electron microscopy are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, they are labor-intensive and a successful outcome is not guaranteed.
View Article and Find Full Text PDFObjective: The liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood.
View Article and Find Full Text PDFMolecular imaging with PET offers an alternative method to quantify programmed-death-ligand 1 (PD-L1) to accurately select patients for immunotherapies. More and more clinical and preclinical trials involve radiolabeling of antibody fragments for their desirably fast clearance and high tumor penetration. As the radiolabeling strategy can significantly impact pharmacokinetics and biodistribution, we explored in this work a site-specific radiofluorination strategy on an anti-PD-L1 fragment antigen-binding (Fab) and compared the pharmacokinetic and biodistribution properties with the same Fab labeled using stochastic radiolabeling chemistry.
View Article and Find Full Text PDFHere, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties.
View Article and Find Full Text PDFPegylation of biopharmaceuticals is the most common strategy to increase their half-life in the blood and is associated with a reduced immunogenicity. As antigen presentation is a primary event in the activation of CD4 T-cells and initiation of Anti-Drug Antibody (ADA) response, we investigated the role of the PEG molecule on the T-cell reactivity of certolizumab pegol (CZP), a pegylated anti-TNFα Fab. We generated T-cell lines raised against CZP and its non-pegylated form (CZNP) and demonstrated CZP primed few T-cells in comparison to CZNP.
View Article and Find Full Text PDFPET imaging of programmed cell death ligand 1 (PD-L1) may help to noninvasively predict and monitor responses to anti-programmed cell death 1/anti-PD-L1 immunotherapies. In this study, we compared the imaging characteristics of 3 radioligands derived from the anti-PD-L1 IgG1 complement 4 (C4). In addition to the IgG C4, we produced a fragment antigen-binding (Fab) C4, as well as a double-mutant IgG C4 (H310A/H435Q) with minimal affinity for the murine neonatal Fc receptor.
View Article and Find Full Text PDFSalmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections.
View Article and Find Full Text PDFJ Control Release
December 2020
Epidermal growth factor receptor (EGFR), involved in cell proliferation and migration, is overexpressed in ~50% of glioblastomas. Anti-EGFR based strategies using monoclonal antibodies (mAb) such as cetuximab (CTX) have been proposed for central nervous system (CNS) cancer therapy. However, the blood-brain barrier (BBB) drastically restricts their brain penetration which limits their efficacy for the treatment of glioblastomas.
View Article and Find Full Text PDFThe efficacy of an antitumoral vaccine relies both on the choice of the antigen targeted and on its design. The tumor antigen survivin is an attractive target to develop therapeutic cancer vaccines because of its restricted over-expression and vital functions in most human tumors. Accordingly, several clinical trials targeting survivin in various cancer indications have been conducted.
View Article and Find Full Text PDFMultiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed.
View Article and Find Full Text PDFIn designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor.
View Article and Find Full Text PDFBecause lipids are hydrophobic, the development of efficient bioconversions in aqueous media free of organic solvents is particularly challenging for green oleochemistry. Within this aim, enzymes exhibiting various abilities to catalyze acyltransfer reaction in water/lipid systems have been identified. Among these, CpLIP2 from Candida parapsilosis has been characterized as a lipase/acyltransferase, able to catalyze acyltransfer reactions preferentially to hydrolysis in the presence of particularly low acyl acceptor concentration and high thermodynamic activity of water (aw>0.
View Article and Find Full Text PDFEscherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form.
View Article and Find Full Text PDFBackground: Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E.
View Article and Find Full Text PDFArtificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures).
View Article and Find Full Text PDF