Diacylglycerol kinases (DGKs) control local and temporal amounts of diacylglycerol (DAG) and phosphatidic acid (PA) by converting DAG to PA through phosphorylation in cells. Certain DGK enzymes possess C-terminal sequences that encode potential PDZ-binding motifs (PBMs), which could be involved in their recruitment into supramolecular signaling complexes. In this study, we used two different interactomic approaches, quantitative native holdup (nHU) and qualitative affinity purification (AP), both coupled to mass spectrometry (MS) to investigate the PDZ partners associated with the potential PBMs of DGKs.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most frequent form of familial intellectual disability. FXS results from the lack of the RNA-binding protein FMRP and is associated with the deregulation of signaling pathways downstream of mGluRI receptors and upstream of mRNA translation. We previously found that diacylglycerol kinase kappa (DGKk), a main mRNA target of FMRP in cortical neurons and a master regulator of lipid signaling, is downregulated in the absence of FMRP in the brain of Fmr1-KO mouse model.
View Article and Find Full Text PDFNucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown.
View Article and Find Full Text PDFBrain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns.
View Article and Find Full Text PDFFront Cell Neurosci
January 2019
Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate specific proteins in restricted compartments and within those only at defined submembrane areas. Furthermore, with its cone-shaped geometry PA locally changes membrane topology and may thus be a key player in membrane trafficking events, especially in membrane fusion and fission steps, where lipid remodeling is believed to be crucial.
View Article and Find Full Text PDFFine-tuned regulation of new proteins synthesis is key to the fast adaptation of cells to their changing environment and their response to external cues. Protein synthesis regulation is particularly refined and important in the case of highly polarized cells like neurons where translation occurs in the subcellular dendritic compartment to produce long-lasting changes that enable the formation, strengthening and weakening of inter-neuronal connection, constituting synaptic plasticity. The changes in local synaptic proteome of neurons underlie several aspects of synaptic plasticity and new protein synthesis is necessary for long-term memory formation.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism. FXS results from the absence of FMRP, an RNA binding protein associated to ribosomes that influences the translation of specific mRNAs in post-synaptic compartments of neurons. The main molecular consequence of the absence of FMRP is an excessive translation of neuronal protein in several areas of the brain.
View Article and Find Full Text PDFFragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP.
View Article and Find Full Text PDFFragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region.
View Article and Find Full Text PDFThe Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific.
View Article and Find Full Text PDFFragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55-200 CGG repeats in the 5' UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates.
View Article and Find Full Text PDFG-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression.
View Article and Find Full Text PDFTargeting of messenger RNAs (mRNAs) in neuron processes relies on cis-acting regulatory elements, the nature of which is poorly understood. Here, we report that approximately 30% of the best-known dendritic mRNAs contain a guanine (G)-quadruplex consensus in their 3'-untranslated region. Among these mRNAs, we show by using RNA structure probing that a G-quadruplex is present in the mRNAs of two key postsynaptic proteins: PSD-95 and CaMKIIa.
View Article and Find Full Text PDFFragile X syndrome is caused by lack of the protein FMRP. FMRP mediates mRNA binding, dendritic mRNA transport and translational control at spines. We examined the role of functional domains of FMRP in neuronal RNA-granule formation and dendritic transport using different FMRP variants, including the mutant FMRP_I304N and the splice-variant FMRP_Iso12.
View Article and Find Full Text PDFFragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the "kissing complex," which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation.
View Article and Find Full Text PDFThe fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in the mRNA metabolism. The absence of FMRP in neurons leads to alterations of the synaptic plasticity, probably as a result of translation regulation defects. The exact molecular mechanisms by which FMRP plays a role in translation regulation have remained elusive.
View Article and Find Full Text PDFThe fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein. Although the SMN complex is essential for assembly of spliceosomal U small nuclear RNPs, it is still not understood why reduced levels of the SMN protein specifically cause motor neuron degeneration. SMN was recently proposed to have specific functions in mRNA transport and translation regulation in neuronal processes.
View Article and Find Full Text PDFFragile X syndrome, the most common form of inherited mental retardation, is caused by absence of FMRP, an RNA-binding protein implicated in regulation of mRNA translation and/or transport. We have previously shown that dFMR1, the Drosophila ortholog of FMRP, is genetically linked to the dRac1 GTPase, a key player in actin cytoskeleton remodeling. Here, we demonstrate that FMRP and the Rac1 pathway are connected in a model of murine fibroblasts.
View Article and Find Full Text PDFFibroblast growth factor 1 (FGF-1) is a powerful angiogenic factor whose gene structure contains four promoters, giving rise to a process of alternative splicing resulting in four mRNAs with alternative 5' untranslated regions (5' UTRs). Here we have identified, by using double luciferase bicistronic vectors, the presence of internal ribosome entry sites (IRESs) in the human FGF-1 5' UTRs, particularly in leaders A and C, with distinct activities in mammalian cells. DNA electrotransfer in mouse muscle revealed that the IRES present in the FGF-1 leader A has a high activity in vivo.
View Article and Find Full Text PDFThe loss of the fragile X mental retardation protein (FMRP) is responsible for the most common cause of inherited mental retardation called the fragile X syndrome. FMRP is suspected to participate in the synaptic plasticity of neurons by acting on posttranscriptional control of gene expression. FMRP is an RNA binding protein that associates with mRNAs together with other proteins to form large ribonucleoprotein complexes.
View Article and Find Full Text PDFThe 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES).
View Article and Find Full Text PDF