Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes.
View Article and Find Full Text PDFTeeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model.
View Article and Find Full Text PDFThe term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways.
View Article and Find Full Text PDFCaspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism.
View Article and Find Full Text PDFObjective: The knowledge about functions of caspases, usually associated with cell death and inflammation, keeps expanding also regarding cartilage. Active caspases are present in the growth plate, and caspase inhibition in limb-derived chondroblasts altered the expression of osteogenesis-related genes. Caspase inhibitors were reported to reduce the severity of cartilage lesions in osteoarthritis (OA), and caspase-3 might represent a promising biomarker for OA prognosis.
View Article and Find Full Text PDFBackground: Autophagy is classified as a form of programmed cell death. Nevertheless, besides the death-inducing function, autophagy enables removal of damaged organelles, energy savings, and thus cell survival. This applies in particular to cells with poor renewal capabilities, such as chondroblasts.
View Article and Find Full Text PDFBackground: Organs that develop early in life, and are replaced by a larger version as the animal grows, often represent a miniature version of the adult organ. Teeth constituting the first functional dentition in small-sized teleost fish, such as medaka (Oryzias latipes), are examples of such miniature organs. With a dentin cone as small as the size of one human cell, or even smaller, these teeth raise the question how many dentin-producing cells (odontoblasts) are required to build such a tooth, and whether this number can be as little as one.
View Article and Find Full Text PDFWithin the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin.
View Article and Find Full Text PDFMandibular/alveolar (m/a) bone, as a component of the periodontal apparatus, allows for the proper tooth anchorage and function of dentition. Bone formation around the tooth germs starts prenatally and, in the mouse model, the mesenchymal condensation turns into a complex vascularized bone (containing osteo-blasts, -cytes, -clasts) within only two days. This very short but critical period is characterized by synchronized cellular and molecular events.
View Article and Find Full Text PDFTuftelin was originally discovered and mostly studied in the tooth, but later found also in other organs. Despite its wide distribution among tissues, tuftelin's function has so far been specified only in the formation of enamel crystals. Nevertheless, in many cases, tuftelin was suggested to be associated with cellular adaptation to hypoxia and recently even with cell differentiation.
View Article and Find Full Text PDFSprouty proteins are modulators of the MAPK/ERK pathway. Amongst these, Sprouty2 (SPRY2) has been investigated as a possible factor that takes part in the initial phases of osteogenesis. However, the context has not yet been investigated and the underlying mechanisms taking place remain unknown.
View Article and Find Full Text PDFFASL (CD178) is known for its role in triggering apoptosis, mostly in relation with immune cells but additional functions have been reported more recently, including those in bone development. Examination of postnatal FasL-deficient mice (gld) showed an increased bone deposition in adult mice when compared with wild types. However, a different phenotype was observed prenatally, when the gld bone was underdeveloped.
View Article and Find Full Text PDFThe mandible is a tooth-bearing structure involving one of the most prominent bones of the facial region. Mesenchymal cell condensation is the first morphological sign of osteogenesis, and several studies have focused on this stage also in the mandible. Little information is available about the early post-condensation period, during which avascular soft condensation turns into vascularized bone, and all three major bone cell types, osteoblasts, osteocytes, and osteoclasts, differentiate.
View Article and Find Full Text PDFFasL is a well-known actor in the apoptotic pathways but recent reports have pointed to its important novel roles beyond cell death, as observed also for bone cells. This is supported by non-apoptotic appearance of FasL during osteogenesis and by significant bone alterations unrelated to apoptosis in FasL deficient () mice. The molecular mechanism behind this novel role has not yet been revealed.
View Article and Find Full Text PDFThe sensory innervation of the dental pulp is essential for tooth function and protection. It is mediated by axons originating from the trigeminal ganglia and is spatio-temporally regulated. We have previously shown that the innervation of bioengineered teeth can be achieved only under immunosuppressive conditions.
View Article and Find Full Text PDFNeural crest (NC) cells are a migratory, multipotent population giving rise to numerous lineages in the embryo. Their plasticity renders attractive their use in tissue engineering-based therapies, but further knowledge on their in vivo behavior is required before clinical transfer may be envisioned. We here describe the isolation and characterization of a new mouse embryonic stem (ES) line derived from Wnt1-CRE-R26 Rosa blastocyst and show that it displays the characteristics of typical ES cells.
View Article and Find Full Text PDFDevelopment of mammalian teeth and surrounding tissues includes time-space changes in the extracellular matrix composition and organization. This requires complex control mechanisms to regulate its synthesis and remodeling. Fibril-associated collagens with interrupted triple helices (FACITs) and a group of small leucine-rich proteoglycans (SLRPs) are involved in the regulation of collagen fibrillogenesis.
View Article and Find Full Text PDFWe present an experimental method allowing the production of three-dimensional organ-like structures, namely microtissues (MTs), in vitro without the need for exogenous extracellular matrix (ECM) or growth factors. Submandibular salivary glands (embryonic day ED14), kidneys (ED13) and lungs (ED13) were harvested from mouse embryos and dissociated into single cells by enzyme treatment. Single cells were seeded into special hanging drop culture plates (InSphero) and cultured for up to 14 days to obtain MTs.
View Article and Find Full Text PDFChameleon teeth develop as individual structures at a distance from the developing jaw bone during the pre-hatching period and also partially during the post-hatching period. However, in the adult, all teeth are fused together and tightly attached to the jaw bone by mineralized attachment tissue to form one functional unit. Tooth to bone as well as tooth to tooth attachments are so firm that if injury to the oral cavity occurs, several neighbouring teeth and pieces of jaw can be broken off.
View Article and Find Full Text PDFThe successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth.
View Article and Find Full Text PDFStem cells are capable of renewing themselves through cell division and have the remarkable ability to differentiate into many different types of cells. They therefore have the potential to become a central tool in regenerative medicine. During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth.
View Article and Find Full Text PDFThe sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice.
View Article and Find Full Text PDF