Accurate protein-protein docking remains challenging, especially for artificial biologics not coevolved naturally against their protein targets, like antibodies and other engineered scaffolds. We previously developed ProPOSE, an exhaustive docker with full atomistic details, which delivers cutting-edge performance by allowing side-chain rearrangements upon docking. However, extensive protein backbone flexibility limits its practical applicability as indicated by unbound docking tests.
View Article and Find Full Text PDFJ Chem Inf Model
August 2023
The medically relevant field of protein-based therapeutics has triggered a demand for protein engineering in different pH environments of biological relevance. engineering workflows typically employ high-throughput screening campaigns that require evaluating large sets of protein residues and point mutations by fast yet accurate computational algorithms. While several high-throughput p prediction methods exist, their accuracies are unclear due to the lack of a current comprehensive benchmarking.
View Article and Find Full Text PDFThe design of superior biologic therapeutics, including antibodies and engineered proteins, involves optimizing their specific ability to bind to disease-related molecular targets. Previously, we developed and applied the Assisted Design of Antibody and Protein Therapeutics (ADAPT) platform for virtual affinity maturation of antibodies (Vivcharuk et al. in PLoS One 12(7):e0181490, https://doi.
View Article and Find Full Text PDFSolution stability is an important factor in the optimization of engineered biotherapeutic candidates such as monoclonal antibodies because of its possible effects on manufacturability, pharmacology, efficacy and safety. A detailed atomic understanding of the mechanisms governing self-association of natively folded protein monomers is required to devise predictive tools to guide screening and re-engineering along the drug development pipeline. We investigated pairs of affinity-matured full-size antibodies and observed drastically different propensities to aggregate from variants differing by a single amino-acid.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2018
Despite decades of development, protein-protein docking remains a largely unsolved problem. The main difficulties are the immense space spanned by the translational and rotational degrees of freedom and the prediction of the conformational changes of proteins upon binding. FFT is generally the preferred method to exhaustively explore the translation-rotation space at a fine grid resolution, albeit with the trade-off of approximating force fields with correlation functions.
View Article and Find Full Text PDFThe Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds.
View Article and Find Full Text PDFProspective assessments of the Wilma-SIE (solvated interaction energy) platform for ligand docking and ranking were performed during the 2013 and 2014 editions of the Community Structure-Activity Resource (CSAR) blind challenge. Diverse targets like a steroid-binding protein, a serine protease (factor Xa), a tyrosine kinase (Syk), and a nucleotide methyltransferase (TrmD) were included. Pose selection was achieved with high precision; in all 24 tests Wilma-SIE top-ranked the native pose among carefully generated sets of decoy conformations.
View Article and Find Full Text PDFHelicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H.
View Article and Find Full Text PDFJ Comput Aided Mol Des
April 2014
We continued prospective assessments of the Wilma-solvated interaction energy (SIE) platform for pose prediction, binding affinity prediction, and virtual screening on the challenging SAMPL4 data sets including the HIV-integrase inhibitor and two host-guest systems. New features of the docking algorithm and scoring function are tested here prospectively for the first time. Wilma-SIE provides good correlations with actual binding affinities over a wide range of binding affinities that includes strong binders as in the case of SAMPL4 host-guest systems.
View Article and Find Full Text PDFWe explore the use of exhaustive docking as an alternative to Monte Carlo and molecular dynamics sampling for the direct integration of the partition function for protein-ligand binding. We enumerate feasible poses for the ligand and calculate the Boltzmann factor contribution of each pose to the partition function. From the partition function, the free energy, enthalpy, and entropy can be derived.
View Article and Find Full Text PDFWe carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions.
View Article and Find Full Text PDFRNA editing, catalyzed by the multiprotein editosome complex, is an essential step for the expression of most mitochondrial genes in trypanosomatid pathogens. It has been shown previously that Trypanosoma brucei RNA editing ligase 1 (TbREL1), a core catalytic component of the editosome, is essential in the mammalian life stage of these parasitic pathogens. Because of the availability of its crystal structure and absence from human, the adenylylation domain of TbREL1 has recently become the focus of several studies for designing inhibitors that target its adenylylation pocket.
View Article and Find Full Text PDFBiofilm development by Candida albicans requires cell adhesion for the initial establishment of the biofilm and the continued stability after hyphal development occurs; however, the regulation of the process has not been fully established. Using chromatin immunoprecipitation coupled to microarray analysis (ChIP-chip) we have characterized a regulon containing the Mcm1p factor that is required for the initial surface adhesion during biofilm formation. In the yeast Saccharomyces cerevisiae several Mcm1p regulons have been characterized in which regulatory specificity is achieved through cofactors binding a sequence adjacent to the Mcm1p binding site.
View Article and Find Full Text PDFBackground: Compared to other model organisms and despite the clinical relevance of the pathogenic yeast Candida albicans, no comprehensive analysis has been done to provide experimental support of its in silico-based genome annotation.
Results: We have undertaken a genome-wide experimental annotation to accurately uncover the transcriptional landscape of the pathogenic yeast C. albicans using strand-specific high-density tiling arrays.
The fate of the carbon stocked in permafrost following global warming and permafrost thaw is of major concern in view of the potential for increased CH(4) and CO(2) emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but no comprehensive study has yet addressed their composition and functional potential in permafrost. Here, a 2-m deep permafrost sample and its overlying active layer soil were subjected to metagenomic sequencing, quantitative PCR (qPCR) and microarray analyses.
View Article and Find Full Text PDFCurr Opin Microbiol
December 2009
Growing evidence suggests that transcriptional regulatory networks in many organisms are highly flexible. Here, we discuss the evolution of transcriptional regulatory networks governing the metabolic machinery of sequenced ascomycetes. In particular, recent work has shown that transcriptional rewiring is common in regulons controlling processes such as production of ribosome components and metabolism of carbohydrates and lipids.
View Article and Find Full Text PDFGlycolysis is a metabolic pathway that is central to the assimilation of carbon for either respiration or fermentation and therefore is critical for the growth of all organisms. Consequently, glycolytic transcriptional regulation is important for the metabolic flexibility of pathogens in their attempts to colonize diverse niches. We investigated the transcriptional control of carbohydrate metabolism in the human fungal pathogen Candida albicans and identified two factors, Tye7p and Gal4p, as key regulators of glycolysis.
View Article and Find Full Text PDFIt has come to our attention that approximately 35% of >100 published microarray datasets, where transcript levels were compared between two different strains, exhibit some form of chromosome-specific bias. While some of these arose from the use of strains whose aneuploidies were not known at the time, in a worrisome number of cases the recombinant strains have acquired additional aneuploidies that were not initially present in the parental strain. The aneuploidies often affected a different chromosome than the one harboring the insertion site.
View Article and Find Full Text PDFWe have examined the periodic expression of genes through the cell cycle in cultures of the human pathogenic fungus Candida albicans synchronized by mating pheromone treatment. Close to 500 genes show increased expression during the G1, S, G2, or M transitions of the C. albicans cell cycle.
View Article and Find Full Text PDFCoordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 activates transcription at these loci and is essential.
View Article and Find Full Text PDFBackground: The Leloir-pathway genes encode the enzymatic machinery involved in the metabolism of galactose.
Results: In the distantly related fungi Saccharomyces cerevisiae and Candida albicans, the genes encoding these enzymes are syntenically arranged, but the upstream regulatory regions are highly divergent. In S.
Background: The 10.9x genomic sequence of Candida albicans, the most important human fungal pathogen, was published in 2004. Assembly 19 consisted of 412 supercontigs, of which 266 were a haploid set, since this fungus is diploid and contains an extensive degree of heterozygosity but lacks a complete sexual cycle.
View Article and Find Full Text PDFRecent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy.
View Article and Find Full Text PDFThe ability of the pathogenic fungus Candida albicans to switch from a yeast to a hyphal morphology in response to external signals is implicated in its pathogenicity. We used glass DNA microarrays to investigate the transcription profiles of 6333 predicted ORFs in cells undergoing this transition and their responses to changes in temperature and culture medium. We have identified several genes whose transcriptional profiles are similar to those of known virulence factors that are modulated by the switch to hyphal growth caused by addition of serum and a 37 degrees C growth temperature.
View Article and Find Full Text PDF