Publications by authors named "Herve Galiano"

The development of a suitable functional electrolyte is urgently required for fast-charging and high-voltage alkali-ion (Li, Na, K) batteries as well as next-generation hybrids supercapacitors. Many recent works focused on an optimal selection of electrolytes for alkali-ion based systems and their electrochemical performance but the understanding of the fundamental aspect that explains their different behaviour is rare. Herein, we report a comparative study of transport properties for LiPF , NaPF , KPF in acetonitrile (AN) and a binary mixture of ethylene carbonate (EC), dimethyl carbonate (DMC): (EC/DMC : 1/1, weigh) through conductivities, densities and viscosities measurements in wide temperature domain.

View Article and Find Full Text PDF

Binary mixtures of cyclic (TMS) or acyclic sulfones (MIS, EIS and EMS) with EMC or DMC have been used in electrolytes containing LiPF6 (1 M) in both Li4Ti5O12/Li half-cells and Li4+xTi5O12/Li4Ti5O12 symmetric cells and compared with standard EC/EMC or EC/DMC mixtures. In half-cells, sulfone-based electrolytes cannot be satisfactorily cycled owing to the formation of a resistive layer at the lithium interface, which is not stable and generates species (RSO2(-) and RSO3(-)) able to migrate toward the titanate electrode interface. Potentiostatic and galvanostatic tests of Li4Ti5O12/Li half-cells show that charge transfer resistance increases drastically when sulfones are used in the electrolyte composition.

View Article and Find Full Text PDF

Cycling after storage of LiNi0.4Mn1.6O4/Li4Ti5O12 cells evidences lower total capacity losses for EMS-, TMS- and MIS-based electrolytes as compared to EC-based at 20 °C.

View Article and Find Full Text PDF

Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl)sulfonyl]imide, [S(111)][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN(111)][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, x(s), in each solvent to the pure solvent. In this case, x(s) is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.

View Article and Find Full Text PDF

This study describes the preparation, characterization and application of [Et(3)NH][TFSA], either neat or mixed with acetonitrile, as an electrolyte for supercapacitors. Thermal and transport properties were evaluated for the neat [Et(3)NH][TFSA], and the temperature dependence of viscosity and conductivity can be described by the VTF equation. The evolution of conductivity with the addition of acetonitrile rendered it possible to determine the optimal mixture at 25 °C, with a weight fraction of acetonitrile of 0.

View Article and Find Full Text PDF

New protic ionic liquids (PILs) based on the morpholinium, N-methylmorpholinium, and N-ethyl morpholinium cations have been synthesized through a simple and atom-economic neutralization reaction between N-alkyl morpholine and formic acid. Their densities, refractive indices, thermal properties, and electrochemical windows have been measured. The temperature dependence of their dynamic viscosity and ionic conductivity have also been determined.

View Article and Find Full Text PDF

New pyrrolidinium-cation-based protic acid ionic liquids (PILs) were prepared through a simple and atom-economic neutralization reactions between pyrrolidine and Brønsted acids, HX, where X is NO 3 (-), HSO 4 (-), HCOO (-), CH 3COO (-) or CF 3COO (-) and CH 3(CH 2) 6COO (-). The thermal properties, densities, electrochemical windows, temperature dependency of dynamic viscosity and ionic conductivity were measured for these PILs. All protonated pyrrolidinium salts studied here were liquid at room temperature and possess a high ionic conductivity (up to 56 mS cm (-1)) at room temperature.

View Article and Find Full Text PDF