Publications by authors named "Herve Folliot"

Spectral dependence of Lamb coupling constant C is experimentally investigated in an InGaAlAs Quantum Wells active medium. An Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser is designed to sustain the oscillation of two orthogonally polarized modes sharing the same active region while separated in the rest of the cavity. This laser design enables to tune independently the two wavelengths and, at the same time, to apply differential losses in order to extract without any extrapolation the actual coupling constant.

View Article and Find Full Text PDF
Article Synopsis
  • Hybrid nanomaterials combining inorganic and organic components are gaining attention for their potential as affordable functional materials, although preventing phase separation and achieving high inorganic content is challenging.
  • The study introduces a novel method of integrating 10 wt% metallic nanocluster compounds into organic copolymers without needing functionalization, ensuring stability through weak interactions.
  • The resulting nanocomposites can be printed or cast onto blue LEDs, producing red-NIR light and singlet oxygen, making them useful for applications in lighting, displays, sensors, and photodynamic therapy.
View Article and Find Full Text PDF

A continuous-wave 1.6 µm-emitting InAs Quantum Dash-based Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser on InP is demonstrated. The laser emits in the L-band with a stable linear polarization.

View Article and Find Full Text PDF

In this paper, we demonstrate that the alignment density of individualized single-walled carbon nanotubes (SWCNTs) can be greatly improved by heating-enhanced dielectrophoresis (HE-DEP) process. The observations by scanning electron microscope (SEM) suggest ultrahigh alignment density and good alignment quality of SWCNTs. The intuitive alignment density of individualized SWCNTs is much higher than the currently reported best results.

View Article and Find Full Text PDF

Thin films and ridge waveguides based on large-diameter semiconducting single-wall carbon nanotubes (s-SWCNTs) dispersed in a polyfluorene derivative are fabricated and optically characterized. Ridge waveguides are designed with appropriate dimensions for single-mode propagation at 1550 nm. Using multimode ridge waveguides, guided s-SWCNT photoluminescence is demonstrated for the first time in the near-infrared telecommunications window.

View Article and Find Full Text PDF

Polyurethane nanocomposites with high content of red NIR luminescent transition metal clusters are presented. The gas permeability of the hybrid material is controlled by adjusting the hard/soft segment ratio of the organic matrix structure leading to a drastic and reversible enhancement of cluster luminescence depending on the molecular oxygen concentration in its surrounding atmosphere.

View Article and Find Full Text PDF

Liquid-crystalline hybrid nanomaterials have been obtained by grafting mesogenic units around luminescent ZnO nanocrystals of 5 nm in diameter. Modifying the mesogenic density around the inorganic core allows the modulation of the liquid-crystalline behavior and its miscibility in commercial liquid crystal (LC). The strong blue photoluminescence observed for the hybrids can be modulated by applying a voltage on a LC cell containing commercial LC and 10 wt % of hybrid.

View Article and Find Full Text PDF

Octahedral Mo6 nanoclusters are functionalized with two organic ligands containing cyanobiphenyl (CB) units, giving luminescent hybrid liquid crystals (LC). Although the mesogenic density around the bulky inorganic core is constant, the two hybrids show different LC properties. Interestingly, one of them shows a nematic phase, which is particularly rare for this kind of supermolecular system.

View Article and Find Full Text PDF

Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the efficiency and power consumption of saturable absorbers (SAs) based on SWCNT with SA based on conventional multiple quantum wells.

View Article and Find Full Text PDF

(In,Ga)As/GaP(001) quantum dots (QDs) are grown by molecular beam epitaxy and studied both theoretically and experimentally. The electronic band structure is simulated using a combination of k·p and tight-binding models. These calculations predict an indirect to direct crossover with the In content and the size of the QDs.

View Article and Find Full Text PDF