Many natural materials display locally varying compositions that impart unique mechanical properties to them which are still unmatched by manmade counterparts. Synthetic materials often possess structures that are well-defined on the molecular level, but poorly defined on the microscale. A fundamental difference that leads to this dissimilarity between natural and synthetic materials is their processing.
View Article and Find Full Text PDFWe investigate the mechanics of elastic fibres carrying liquid droplets. In such systems, buckling may localize inside the drop cavity if the fibre is thin enough. This so-called drop-on-coilable-fibre system exhibits a surprising liquid-like response under compression and a solid-like response under tension.
View Article and Find Full Text PDFThis work reports an innovative humidity-driven actuation concept based on conversion of chemical energy of adsorption/desorption using simple nanoporous sol-gel silica thin films as humidity-responsive materials. Bilayer-shaped actuators, consisting of a humidity-sensitive active nanostructured silica film deposited on a polymeric substrate (Kapton), were demonstrated as an original mean to convert water molecule adsorption and capillary condensation in usable mechanical work. Reversible solvation stress changes in silica micropores by water adsorption and energy produced by the rigid silica film contraction, induced by water capillary condensation in mesopores, were finely controlled and used as energy sources.
View Article and Find Full Text PDFAn essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension.
View Article and Find Full Text PDFNaturwissenschaften
August 2015
We demonstrate the impressive adhesive qualities of uloborid spider orb-web capture when dry, which are lost when the nano-filament threads are wetted. A force sensor with a 50 nN-1 mN detection sensitively allowed us to measure quantitatively the stress-strain characteristics of native silk threads in both the original dry state and after wetting by controlled application of water mist with droplet sizes ranging between 3 and 5 μm and densities ranging between 10(4) and 10(5) per mm(3). Stress forces of between 1 and 5 μN/μm(2) in the native, dry multifilament thread puffs were reduced to between 0.
View Article and Find Full Text PDF