Publications by authors named "Herve Blottiere"

Article Synopsis
  • The probiotic 29784 (Bs29784) supports chicken intestinal health by producing metabolites like hypoxanthine, niacin, and pantothenate, enhancing resilience and performance through immune response, barrier function, and microbiota modulation.
  • Experimental models showed that Bs29784 vegetative cells significantly reduced inflammation and improved intestinal integrity better than spores, while individual metabolites had distinct positive effects on inflammation and cell growth.
  • Fermentation studies revealed that different metabolites influenced the microbiota and fermentation profiles, with specific compounds like PTH and HPX enhancing epithelial resilience and overall intestinal health.
View Article and Find Full Text PDF

Our understanding of the symbiotic relationship between the microbiota and its host has constantly evolved since our understanding that the "self" was not only defined by our genetic patrimony but also by the genomes of bugs living in us. The first culture-based methods highlighted the important functions of the microbiota. However, these methods had strong limitations and did not allow for a full understanding of the complex relationships that occur at the interface between the microbiota and the host.

View Article and Find Full Text PDF

The gut microbiota is a considerable source of biologically active compounds that can promote intestinal homeostasis and improve immune responses. Here, we used large expression libraries of cloned metagenomic DNA to identify compounds able to sustain an anti-inflammatory reaction on host cells. Starting with a screen for NF-κB activation, we have identified overlapping clones harbouring a heterodimeric ATP-binding cassette (ABC)-transporter from a Firmicutes.

View Article and Find Full Text PDF

The anaerobic bacterium is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by have only been partially uncovered. Here, we showed that releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway.

View Article and Find Full Text PDF

Taste perception is crucial and impairments, which can be linked to pathologies, can lead to eating disorders. It is triggered by taste compounds stimulating receptors located on the tongue. However, the tongue is covered by a film containing saliva and microorganisms suspected to modulate the taste receptor environment.

View Article and Find Full Text PDF

Caudo-rostral migration of pathological forms of α-synuclein from the gut to the brain is proposed as an early feature in Parkinson's disease pathogenesis, but the underlying mechanisms remain unknown. Intestinal epithelial enteroendocrine cells sense and respond to numerous luminal signals, including bacterial factors, and transmit this information to the brain via the enteric nervous system and vagus nerve. There is evidence that gut bacteria composition and their metabolites change in Parkinson's disease patients, and these alterations can trigger α-synuclein pathology in animal models of the disorder.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) affects about 20-40% of the adult population in high-income countries and is now a leading indication for liver transplantation and can lead to hepatocellular carcinoma. The link between gut microbiota dysbiosis and NAFLD is now clearly established. Through analyses of the gut microbiota with shotgun metagenomics, we observe that compared to healthy controls, is depleted in patients with liver diseases such as NAFLD.

View Article and Find Full Text PDF

Background And Objective: There is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson's disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology.

View Article and Find Full Text PDF

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation.

View Article and Find Full Text PDF
Article Synopsis
  • Taf4 is a key subunit of the transcription factor TFIID, essential for regulating gene expression in the intestinal epithelium, particularly during its development and renewal from stem cells.
  • Inactivation of Taf4 in mice during embryonic development disrupted gut formation and affected the maintenance of adult stem cells, leading to issues with epithelial turnover and inflammation response in adults.
  • Loss of Taf4 increased activity of the Polycomb Repressive Complex 2 (PRC2), which negatively impacted stem and progenitor cells while promoting a tumor-friendly environment, but this effect could be countered by inhibiting Ezh2, a PRC2 component.
View Article and Find Full Text PDF

The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear.

View Article and Find Full Text PDF

Underpinning the theory "developmental origins of health and disease" (DOHaD), evidence is accumulating to suggest that the risks of adult disease are in part programmed by exposure to environmental factors during the highly plastic "first 1,000 days of life" period. An elucidation of the mechanisms involved in this programming is challenging as it would help developing new strategies to promote adult health. The intestinal microbiome is proposed as a long-lasting memory of the neonatal environment.

View Article and Find Full Text PDF

Anorexia nervosa (AN) is a severe eating disorder which can lead to malnutrition and life threatening complications with high mortality rates. We designed our analysis to identify gut microbial taxa differentially abundant between AN and HC across different 16S rRNA gene datasets. We identified a reduced abundance, diversity and richness of Roseburia genus in the microbiota of patients with AN.

View Article and Find Full Text PDF

Non-alcoholic fatty liver diseases (NAFLD) are associated with changes in the composition and metabolic activities of the gut microbiota. However, the causal role played by the gut microbiota in individual susceptibility to NAFLD and particularly at its early stage is still unclear. In this context, we transplanted the microbiota from a patient with fatty liver (NAFL) and from a healthy individual to two groups of mice.

View Article and Find Full Text PDF

Background: Chronic immune-mediated diseases are rapidly expanding and notoriously difficult to cure. Altered relatively stable intestinal microbiota configurations are associated with several of these diseases, and with a possible pre-disease condition (more susceptible to disease development) of the host-microbiota ecosystem. These observations are reminiscent of the behavior of an ecosystem with alternative stable states (different stable configurations that can exist under identical external conditions), and we recently postulated that health, pre-disease and disease represent such alternative states.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanometric spherical structures involved in intercellular communication, whose production is considered to be a widespread phenomenon in living organisms. Bacterial EVs are associated with several processes that include survival, competition, pathogenesis, and immunomodulation. Among probiotic Gram-positive bacteria, some strains exhibit anti-inflammatory activity, notably via surface proteins such as the surface-layer protein B (SlpB).

View Article and Find Full Text PDF

Chemotherapy remains the gold standard for advanced cancer. Pemetrexed, a chemotherapeutic agent used in non-small cell lung cancer, can induce significant side effects in patients. Although microbiota's role in the efficacy and/or toxicity of chemotherapy agents has been demonstrated, the impacts of pemetrexed on the gut microbiota and on gastrointestinal inflammation remain unknown.

View Article and Find Full Text PDF

In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development.

View Article and Find Full Text PDF

: The microbiota-gut brain (MGB) axis is the bidirectional communication between the intestinal microbiota and the brain. An increasing body of preclinical and clinical evidence has revealed that the gut microbial ecosystem can affect neuropsychiatric health. However, there is still a need of further studies to elucidate the complex gene-environment interactions and the role of the MGB axis in neuropsychiatric diseases, with the aim of identifying biomarkers and new therapeutic targets, to allow early diagnosis and improving treatments.

View Article and Find Full Text PDF

Owing to the growing recognition of the gut microbiota as a main partner of human health, we are expecting that the number of indications for fecal microbiota transplantation (FMT) will increase. Thus, there is an urgent need for standardization of the entire process of fecal transplant production. This study provides a complete standardized procedure to prepare and store live and ready-to-use transplants that meet the standard requirements of good practices to applied use in pharmaceutical industry.

View Article and Find Full Text PDF

Current fructose consumption levels often overwhelm the intestinal capacity to absorb fructose. We investigated the impact of fructose malabsorption on intestinal endocrine function and addressed the role of the microbiota in this process. To answer this question, a mouse model of moderate fructose malabsorption [ketohexokinase mutant (KHK)] and wild-type (WT) littermate mice were used and received a 20%-fructose (KHK-F and WT-F) or 20%-glucose diet.

View Article and Find Full Text PDF

The ligand activated transcription factor, aryl hydrocarbon receptor (AhR) emerged as a critical regulator of immune and metabolic processes in the gastrointestinal tract. In the gut, a main source of AhR ligands derives from commensal bacteria. However, many of the reported microbiota-derived ligands have been restricted to indolyl metabolites.

View Article and Find Full Text PDF

Commensal bacteria are crucial for the development and maintenance of a healthy immune system therefore contributing to the global well-being of their host. A wide variety of metabolites produced by commensal bacteria are influencing host health but the characterization of the multiple molecular mechanisms involved in host-microbiota interactions is still only partially unraveled. The intestinal epithelial cells (IECs) take a central part in the host-microbiota dialogue by inducing the first microbial-derived immune signals.

View Article and Find Full Text PDF

The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined.

View Article and Find Full Text PDF