Background: Secretory IgA interacts with commensal bacteria, but its impact on human mycobiota ecology has not been widely explored. In particular, whether human IgA-deficiency is associated with gut fungal dysbiosis remains unknown.
Objectives: Our goal was to study the impact of IgA on gut mycobiota ecology.
The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analysed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently.
View Article and Find Full Text PDFTight junctions play a major role in maintaining the integrity and impermeability of the intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation through the intestinal mucosa and invade their host. Different strategies are used by pathogens, aimed at directly destabilizing the junctional network or modulating the different signaling pathways involved in the modulation of these junctions.
View Article and Find Full Text PDFThere is increasing evidence that the chaperone-like protein CDC48 (cell division cycle 48) plays a role in plant immunity. Cytosolic ascorbate peroxidase (cAPX), which is a major regulator of the redox status of plant cells, has previously been shown to interact with CDC48. In this study, we examined the regulation of cAPX by the ATPase NtCDC48 during the cryptogein-induced immune response in tobacco cells.
View Article and Find Full Text PDFThe evolutionally conserved chaperone-like protein CDC48 (cell division cycle 48) is a major component of ubiquitin-dependent protein degradation pathways in animal and yeast and, more generally, of the protein quality control machinery. In plants, CDC48 plays essential regulatory functions in development and the possibly that it contributes to protein degradation through the ubiquitin-proteasome system (UPS) and the endoplasmic reticulum-associated protein degradation (ERAD) system has been reported. In this review we described recent findings highlighting a role for CDC48 in plant immunity.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2017
Background: The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity.
Scope Of Review: p97 is also conserved in plants (CDC48) but its functions are less understood.
Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea.
View Article and Find Full Text PDF