Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts.
View Article and Find Full Text PDFTo facilitate fast transfer of photogenerated electrons and surface stability, the CuO photocathode needs to be coupled with another heterojunction material. Here, we propose CuO/ZnO heterojunctions as photocathodes for photoelectrochemical (PEC) water splitting. First, CuO was grown on a Cu substrate, either in the form of a foil or mesh gauge, via anodization followed by postheating treatment.
View Article and Find Full Text PDFPyridinic N-type doped at carbon has been known to have better electrocatalytic activity toward the oxygen reduction reaction (ORR) than the others. Herein, we proposed to prepare pyridinic N doped at carbon aerogels (CaA) derived from biomass, i.e.
View Article and Find Full Text PDFA comparison of the amine-modified silica particle's characteristics via ex- and in-situ routes and their application as a CO gas adsorbent is reported. Modifying silica particles via ex-situ involves two separate steps: forming porous silica particles with sodium lauryl sulfate (SLS) as a template and impregnation using ultrasound assistance. In contrast to ex-situ modification, in-situ modification of silica particles is carried out in one step by mixing directly between the silica source and the modifying agent.
View Article and Find Full Text PDFCO absorption using sodium silicate aqueous solution in a bubble column has been studied. Sodium silicate aqueous solutions are classified as non-Newtonian fluids that can affect the bubble distribution. The goal of this research is to investigate the effect of a superficial gas velocity (0.
View Article and Find Full Text PDFThe hydrophilicity of sulfonic acid-functionalized solid catalysts tends to accelerate the deactivation of the catalyst for chemical reactions where water is produced during the process. In this work, we proposed a hydrophobic carbon aerogel acid catalyst derived from coir fibers by a sulfonation-hydrophobization route via the diazo reduction method. Sulfonation using the diazo reduction method offers some advantages such as the process takes only a few minutes and the modified surface can be easily modified further to be hydrophobic.
View Article and Find Full Text PDFWe report the preparation of manganese dioxide (MnO) nanoparticles and graphene oxide (GO) composites reduced by an electrophoretic deposition (EPD) process. The MnO nanoparticles were prepared by the electrolysis of an acidic KMnO solution using an alternating monopolar arrangement of a multiple-electrode system. The particles produced were γ-MnO with a rod-like morphology and a surface area of approximately 647.
View Article and Find Full Text PDF