Data generated using single-cell RNA-sequencing has the potential to transform understanding of the cerebral circulation and advance clinical care. However, the high volume of data, sometimes generated and presented without proper pathophysiological context, can be difficult to interpret and integrate into current understanding of the cerebral circulation and its disorders. Furthermore, heterogeneity in the representation of brain regions and vascular segments makes it difficult to compare results across studies.
View Article and Find Full Text PDFPurpose: Females are at increased lifetime risk of stroke and experience worse outcomes compared with males. Tryptophan metabolism through the kynurenine pathway, resulting in decreased tryptophan concentrations, is associated with poor outcomes (larger infarct volume, higher National Institutes of Health Stroke Scale [NIHSS] score, and increased early mortality). This metabolic pathway activity varies by sex in healthy adults.
View Article and Find Full Text PDFJ Womens Health (Larchmt)
October 2024
Females suffer greater lifetime risk of stroke and greater morbidity and mortality from stroke compared with males. This study's objective was to identify differences in metabolomic profiling of females and males with stroke and which differences were associated with neurological outcome. Females and males with acute ischemic stroke enrolled in the Emergency Medicine Specimen Bank at a comprehensive stroke center provided whole blood samples upon arrival for mass spectrometry-based metabolomics.
View Article and Find Full Text PDFExcitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI.
View Article and Find Full Text PDFIntroduction: Recognition of stroke by Emergency Medical Services (EMS) is critical to initiate rapid emergency department treatment. Most prehospital stroke screening tools rely heavily on presentation with the classic symptoms of facial droop, speech changes, unilateral weakness. However, women may be less likely to present with classic symptoms and may also have different distributions of stroke by anatomical location.
View Article and Find Full Text PDFPreclinical studies have established that neonatal exposure to contemporary sedative/hypnotic drugs causes neurotoxicity in the developing rodent and primate brains. Our group recently reported that novel neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) induced effective hypnosis in both neonatal and adult rodents but did not cause significant neurotoxicity in vulnerable brain regions such as subiculum, an output region of hippocampal formation particularly sensitive to commonly used sedatives/hypnotics. Despite significant emphasis on patho-morphological changes, little is known about long-term effects on subicular neurophysiology after neonatal exposure to neuroactive steroids.
View Article and Find Full Text PDFPost-stroke cognitive impairment and dementia (PSCID) affects many survivors of large vessel cerebral ischemia. The molecular pathways underlying PSCID are poorly defined but may overlap with neurodegenerative pathophysiology. Specifically, synaptic dysfunction after stroke may be directly mediated by alterations in the levels of amyloid beta (Aβ), the peptide that accumulates in the brains of Alzheimer's disease (AD) patients.
View Article and Find Full Text PDFThe Ca/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories.
View Article and Find Full Text PDFIntroduction: Traumatic brain injury (TBI) is a major health issue for service members deployed and is more common in recent conflicts; however, a thorough understanding of risk factors and trends is not well described. This study aims to characterize the epidemiology of TBI in U.S.
View Article and Find Full Text PDFNeonatal stroke is common and causes life-long motor and cognitive sequelae. Because neonates with stroke are not diagnosed until days-months after the injury, chronic targets for repair are needed. We evaluated oligodendrocyte maturity and myelination and assessed oligodendrocyte gene expression changes using single cell RNA sequencing (scRNA seq) at chronic timepoints in a mouse model of neonatal arterial ischemic stroke.
View Article and Find Full Text PDFThe Ca /calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories.
View Article and Find Full Text PDFThe dorsal subiculum (dSub) is one of the key structures responsible for the formation of hippocampal memory traces but the contribution of individual ionic currents to its cognitive function is not well studied. Although we recently reported that low-voltage-activated T-type calcium channels (T-channels) are crucial for the burst firing pattern regulation in the dSub pyramidal neurons, their potential role in learning and memory remains unclear. Here we used in vivo local field potential recordings and miniscope calcium imaging in freely behaving mice coupled with pharmacological and genetic tools to address this gap in knowledge.
View Article and Find Full Text PDFWomen continue to face a greater lifetime morbidity and mortality from stroke and have been shown to respond differently to stroke treatments compared to men. Since 2016, updated National Institutes of Health (NIH) policies require research studies to consider sex as a biological variable. However, the way in which this policy affects study design, analysis, and reporting is variable, with few studies performing and reporting a subgroup analysis based on biological sex.
View Article and Find Full Text PDFBrain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults.
View Article and Find Full Text PDFMicroscale bots intended for targeted drug delivery must move through three-dimensional (3D) environments that include bifurcations, inclined surfaces, and curvature. In previous studies, we have shown that magnetically actuated colloidal microwheels (µwheels) reversibly assembled from superparamagnetic beads can translate rapidly and be readily directed. Here we show that, at high concentrations, µwheels assemble into swarms that, depending on applied magnetic field actuation patterns, can be designed to transport cargo, climb steep inclines, spread over large areas, or provide mechanical action.
View Article and Find Full Text PDFIschemic stroke is a devastating health problem, affecting approximately 800,000 patients in the US every year, making it the leading cause of combined death and disability in the country. Stroke has historically been thought of as predominantly impacting men, however it is becoming increasingly clear that stroke affects women to a greater degree than men. Indeed, women have worse outcomes compared to men following ischemic stroke.
View Article and Find Full Text PDFObjectives: Emergency Medicine Service (EMS) providers play a pivotal role in early identification and initiation of treatment for stroke. The objective of this study is to characterize nationwide EMS practices for suspected stroke and assess for gender-based differences in compliance with American Stroke Association (ASA) guidelines.
Materials And Methods: Using the 2019-2020 National Emergency Medical Services Information System (NEMSIS) Datasets, we identified encounters with an EMS designated primary impression of stroke.
Background: To reestablish blood flow in vessels occluded by clots, tissue plasminogen activator (tPA) can be used; however, its efficacy is limited by transport to and into a clot and by the depletion of its substrate, plasminogen.
Objectives: To overcome these rate limitations, a platform was designed to co-deliver tPA and plasminogen based on microwheels (µwheels), wheel-like assemblies of superparamagnetic colloidal beads that roll along surfaces at high speeds.
Methods: The biochemical speed limit was determined by measuring fibrinolysis of plasma clots at varying concentrations of tPA (10-800 nM) and plasminogen (1-6 µM).
Binding of two different CaM kinases, CaMKII and DAPK1, to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B near S1303 has been implicated in excitotoxic/ischemic neuronal cell death. The GluN2B mutation (L1298A, R1300Q) is neuroprotective but abolishes only CaMKII but not DAPK1 binding. However, both kinases can additionally phosphorylate GluN2B S1303.
View Article and Find Full Text PDFCaMKIIα plays a dual role in synaptic plasticity, as it can mediate synaptic changes in opposing directions. We hypothesized that CaMKIIα plays a similar dual role also in neuronal cell death and survival. Indeed, the CaMKII inhibitor tatCN21 is neuroprotective when added during or after excitotoxic/ischemic insults, but was described to cause sensitization when applied long-term prior to such insult.
View Article and Find Full Text PDFHippocampal cell death and cognitive dysfunction are common following global cerebral ischemia across all ages, including children. Most research has focused on preventing neuronal death. Restoration of neuronal function after cell death is an alternative approach (neurorestoration).
View Article and Find Full Text PDFEpilepsy is a brain disorder characterized by the occurrence of recurrent spontaneous seizures. Behavioral disorders and altered cognition are frequent comorbidities affecting the quality of life of people with epilepsy. These impairments are undoubtedly multifactorial and the specific mechanisms underlying these comorbidities are largely unknown.
View Article and Find Full Text PDF