Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, -heterocyclic carbenes (NHCs), etc.
View Article and Find Full Text PDFThis account describes our recent progress on the strategic incorporation of fluorine and organofluorine moieties into new-generation taxoid anticancer agents for medicinal chemistry and chemical biology studies. In the case study 1, novel 3rd-generation fluorotaxoids bearing 3-OCF or 3-OCFH group in the C2-benzoate moiety were designed, synthesized and examined for their anticancer activities. The potency of novel taxoids against drug-resistant cancer cell lines was 2-3 orders of magnitude higher than that of paclitaxel (PTX).
View Article and Find Full Text PDFTaxanes are widely used in the treatment of ovarian carcinomas. One of the main problems with conventional taxanes is the risk of development of multidrug resistance. New-generation synthetic experimental taxoids (Stony Brook Taxanes; SB-T) have shown promising effects against various resistant tumor models.
View Article and Find Full Text PDF