Publications by authors named "Herrick Baltscheffsky"

A gene for membrane-integral inorganic pyrophosphatase (miPPase) was found in the composite genome of the extremophile archaeon Candidatus Korarchaeum cryptofilum (CKc). This korarchaeal genome shows unusual partial similarity to both major archaeal phyla Crenarchaeota and Euryarchaeota. Thus this Korarchaeote might have retained features that represent an ancestral archaeal form, existing before the occurrence of the evolutionary bifurcation into Crenarchaeota and Euryarchaeota.

View Article and Find Full Text PDF

The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H(+)-pump, and like the Na(+)-pumping ATPase, it can be a Na(+)-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na(+) transport preceded ATP and H(+) transport in association with geochemistry of the Earth at the time of the origin and early evolution of life.

View Article and Find Full Text PDF

Suggestions by Calvin about a role of inorganic pyrophosphate (PPi) in early photosynthesis and by Lipmann that PPi may have been the original energy-rich phosphate donor in biological energy conversion, were followed in the mid-1960s by experimental results with isolated chromatophore membranes from the purple photosynthetic bacterium Rhodospirillum rubrum. PPi was shown to be hydrolysed in an uncoupler stimulated reaction by a membrane-bound inorganic pyrophosphatase (PPase), to be formed at the expense of light energy in photophosphorylation and to be utilized as an energy donor for various energy-requiring reactions, as a first known alternative to ATP. This direct link between PPi and photosynthesis led to increasing attention concerning the role of PPi in both early and present biological energy transfer.

View Article and Find Full Text PDF

The unique family of membrane-bound proton-pumping inorganic pyrophosphatases, involving pyrophosphate as the alternative to ATP, was investigated by characterizing 166 members of the UniProtKB/Swiss-Prot + UniProtKB/TrEMBL databases and available completed genomes, using sequence comparisons and a hidden Markov model based upon a conserved 57-residue region in the loop between transmembrane segments 5 and 6. The hidden Markov model was also used to search the approximately one million sequences recently reported from a large-scale sequencing project of organisms in the Sargasso Sea, resulting in additional 164 partial pyrophosphatase sequences. The strongly conserved 57-residue region was found to contain two nonapeptidyl sequences, mainly consisting of the four 'very early' proteinaceous amino acid residues Gly, Ala, Val and Asp, compatible with an ancient origin of the inorganic pyrophosphatases.

View Article and Find Full Text PDF

Comparative studies between the proton-pumping, membrane-bound inorganic pyrophosphatases (H(+)-PPases) from hyperthermophilic and thermophilic prokaryotes and those from mesophilic organisms can now be performed because of very recent sequence data. Typical overall factors that contribute to protein thermostability are found in H(+)-PPases from extremophiles; nevertheless, putative active site motifs of this class of enzymes may be identical over the whole range of average growth temperatures of the compared prokaryotes. Heterologous expression in yeast of H(+)-PPases from organisms spanning a wide range of thermal habitats has allowed the biochemical comparison among these proteins within the same system, ensuring that differences observed are due to intrinsic characteristics of the proteins and not to their interactions with different cellular environments.

View Article and Find Full Text PDF