Publications by authors named "Herrebout W"

The phytochemical investigation of the leaves and the roots of Suregada procera afforded the new ent-abietane diterpenoid sureproceriolide A (1) along with the known secondary metabolites 8,14β:11,12α-diepoxy-13(15)-abietane-16,12-olid (2), jolkinolide A (3), jolkinolide E (4), ent-pimara-8(14),15-dien-19-oic acid (5), sitosterol (6), oleana-9(11):12-dien-3β-ol (7), and oleic acid (8). Their structures were elucidated by NMR spectroscopic and mass spectrometric analyses, and the structure of jolkinolide A (3) was confirmed by single-crystal X-ray diffraction analysis. Sureproceriolide A (1) showed modest activity against the Gram-positive bacterium Staphylococcus lugdunensis (MIC = 31.

View Article and Find Full Text PDF

Three new dihydroflavonols, gloverinols A-C (-), a new flavon-3-ol, gloverinol D (), two new isoflavans, gloveriflavan A () and B (), and seven known compounds were isolated from the root bark of . The structures of the isolates were elucidated by using NMR, ECD, and HRESIMS data analyses. Among the isolated compounds, gloverinol B (), gloveriflavan B (), and 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4-hydroxyphenyl)-1-propanone () were the most active against , with MIC values of 9.

View Article and Find Full Text PDF

Three new (-) and six known rotenoids (-), along with three known isoflavones (-), were isolated from the leaves of ssp. . A new glycosylated isoflavone (), four known isoflavones (-), and one known chalcone () were isolated from the root wood extract of the same plant.

View Article and Find Full Text PDF

Chiral analysis has become a crucial step in studying the stereospecific synthesis of Active Pharmaceutical Ingredients (APIs). Both Vibrational Circular Dichroism (VCD) and Molecular Rotational Resonance (MRR) spectroscopy are capable of determining absolute configurations (ACs) via comparison of experimental and calculated data. In this regard, each technique has its own caveats.

View Article and Find Full Text PDF

Vibrational Circular Dichroism (VCD) spectra often differ strongly from one conformer to another, even within the same absolute configuration of a molecule. Simulated molecular VCD spectra typically require expensive quantum chemical calculations for all conformers to generate a Boltzmann averaged total spectrum. This paper reports whether machine learning (ML) can partly replace these quantum chemical calculations by capturing the intricate connection between a conformer geometry and its VCD spectrum.

View Article and Find Full Text PDF

Vibrational circular dichroism (VCD) is one of the most powerful techniques to assess the stereochemistry of chiral molecules in solution state. The need for quantum chemical calculations to interpret experimental data, however, has precluded its widespread use by non-experts. Herein, we propose the search and validation of IR and VCD spectral markers to circumvent the requirement of DFT calculations allowing for absolute configuration assignments even in complex mixtures.

View Article and Find Full Text PDF

The Amaryllidaceae species are well-known as a rich source of bioactive compounds in nature. Although has been studied for decades, its polar components were rarely explored. The current phytochemical investigation of Amaryllidaceae alkaloids from led to the identification of three previously undescribed compounds: -demethyl-norlycoramine (), (-)-2--pseudolycorine () and (+)-2--pseudolycorine (), together with eight known compounds: 6α-hydroxyhippeastidine (), 6β-hydroxyhippeastidine (), lycorine (), 2--lycorine (), zephyranthine (), ungeremine (), pancratistatin () and 9--demethyl-7--methyllycorenine ().

View Article and Find Full Text PDF

Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins.

View Article and Find Full Text PDF

The halogen bond complexes CF3X⋯Y and C2F3X⋯Y, with Y = furan, thiophene, selenophene and X = Cl, Br, I, have been studied by using DFT and CCSD(T) in order to understand which factors govern the interaction between the halogen atom X and the aromatic ring. We found that PBE0-dDsC/QZ4P gives an adequate description of the interaction energies in these complexes, compared to CCSD(T) and experimental results. The interaction between the halogen atom X and the π-bonds in perpendicular orientation is stronger than the interaction with the in-plane lone pairs of the heteroatom of the aromatic cycle.

View Article and Find Full Text PDF

Protoglobin from (Pgb) is a dimeric globin belonging to the same lineage of the globin superfamily as globin-coupled sensors. A putative role in the scavenging of reactive nitrogen and oxygen species has been suggested as a possible adaptation mechanism of the host organism to different gaseous environments in the course of evolution. A combination of optical absorption, electronic circular dichroism (ECD), resonance Raman (rRaman), and electron paramagnetic resonance (EPR) reveal the unusual reaction of ferric Pgb with nitrite.

View Article and Find Full Text PDF

Structural elucidation has always been challenging, and misassignment remains a stringent issue in the field of natural products. The growing interest in discovering unknown, complex natural structures accompanies the increasing awareness concerning misassignments in the community. The combination of various spectroscopic methods with molecular modeling has gained popularity in recent years.

View Article and Find Full Text PDF

The relative stereochemistry of organic molecules can be determined by comparing theoretical and experimental infrared (IR) spectra of all isomers and assessing the best match. For this purpose, we have recently developed the IR spectra alignment (IRSA) algorithm for automated optimal alignment. IRSA provides a set of quantitative metrics to identify the candidate structure that agrees best with the experimental spectrum.

View Article and Find Full Text PDF

The antibiotic glycopeptide class, of which vancomycin is the original compound, has received due attention over the past few decades in search of antibiotics to overcome resistances developed by bacteria. Crucial for the understanding and further development of glycopeptides that possess desired antibacterial effects is the determination of their conformational behavior, as this sheds light on the mechanism of action of the compound. Among others, vibrational optical activity (VOA) techniques (vibrational circular dichroism and Raman optical activity) can be deployed for this, but the question remains to what extent these spectroscopic techniques can provide information concerning the molecular class under investigation.

View Article and Find Full Text PDF

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C.

View Article and Find Full Text PDF

A genomic and bioactivity informed analysis of the metabolome of the extremophile Amycolatopsis sp. DEM30355 has allowed for the discovery and isolation of the polyketide antibiotic tatiomicin. Identification of the biosynthetic gene cluster was confirmed by heterologous expression in Streptomyces coelicolor M1152.

View Article and Find Full Text PDF

Vibrational circular dichroism (VCD) and Raman optical activity (ROA) are two spectroscopic techniques that are sensitive towards the conformational behaviour of molecules, and are often complementary herein. In this work we pursue the determination of the conformational ensemble of the antibiotic glycopeptide vancomycin in DMSO through comparison of experimental and computational spectra, both for VCD and ROA. ROA is found to be highly suitable for the task, identifying an ensemble that strongly resembles the NMR conformation.

View Article and Find Full Text PDF

It is crucial for fundamental physical chemistry techniques to find their application in tackling real-world challenges. Hitherto, Raman optical activity (ROA) spectroscopy is one of the examples where a promising future within the pharmaceutical sector is foreseen, but has not yet been established. Namely, the technique is believed to be able to contribute in investigating the conformational behaviour of drug candidates.

View Article and Find Full Text PDF

Linear triatomic molecules (CO, NO, and OCS) are scrutinized for their propensity to form perpendicular tetrel (CO and OCS) or pnictogen (NO) bonds with Lewis bases (dimethyl ether and trimethyl amine) as compared with their tendency to form end-on chalcogen bonds. Comparison of the IR spectra of the complexes with the corresponding monomers in cryogenic solutions in liquid argon enables to determine the stoichiometry and the nature of the complexes. In the present cases, perpendicular tetrel and pnictogen 1:1 complexes are identified mainly on the basis of the lifting of the degenerate ν 2 bending mode with the appearance of both a blue and a red shift.

View Article and Find Full Text PDF

Chirality plays a crucial role in drug discovery and development. As a result, a significant number of commercially available drugs are structurally dissymmetric and enantiomerically pure. The determination of the exact 3D structure of drug candidates is, consequently, of paramount importance for the pharmaceutical industry in different stages of the discovery pipeline.

View Article and Find Full Text PDF

The added value of supervised Machine Learning (ML) methods to determine the Absolute Configuration (AC) of compounds from their Vibrational Circular Dichroism (VCD) spectra was explored. Among all ML methods considered, Random Forest (RF) and Feedforward Neural Network (FNN) yield the best performance for identification of the AC. At its best, FNN allows near-perfect AC determination, with accuracy of prediction up to 0.

View Article and Find Full Text PDF

Phytochemical investigation of the -BuOH extract of the roots of Sc. Elliot (Combretaceae) led to the isolation and identification of 10 oleanane triterpenoids (-), among which six new compounds, i.e.

View Article and Find Full Text PDF

A new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift.

View Article and Find Full Text PDF

In this work, we introduce the first enantiopure bistriazolate-based metal-organic framework, CFA-18 (Coordination Framework Augsburg-18), built from the R-enantiomer of 7,7,7',7'-tetramethyl-6,6',7,7'-tetrahydro-3H,3'H-5,5'-spirobi[indeno[5,6-d]-[1,2,3]triazole] (H2-spirta). The enantiopurity and absolute configuration of the new linker were confirmed by several chiroselective methods. Reacting H2-spirta in hot N,N-dimethylformamide (DMF) with manganese(ii) chloride gave CFA-18 as colorless crystals.

View Article and Find Full Text PDF

Artemisinin and two of its derivatives, dihydroartemisinin and artesunate, which are front line drugs against malaria, were investigated using Raman optical activity (ROA) and vibrational circular dichroism (VCD) experiments, both supported by density functional theory (DFT) level calculations. The experimental techniques combined with DFT calculations could show that dihydroartemisinin was present as an epimeric mixture in solution. In addition, an approximation of the epimeric ratio could be extracted which was in agreement with the ratio obtained by 1H-NMR spectroscopy.

View Article and Find Full Text PDF