Publications by authors named "Herre Jelger Risselada"

In this study, we utilize genetic algorithms to develop a realistic implicit solvent ultra-coarse-grained (ultra-CG) membrane model comprising only three interaction sites. The key philosophy of the ultra-CG membrane model SMARTINI3 is its compatibility with realistic membrane proteins, for example, modeled within the Martini coarse-grained (CG) model, as well as with the widely used GROMACS software for molecular simulations. Our objective is to parameterize this ultra-CG model to accurately reproduce the experimentally observed structural and thermodynamic properties of Phosphatidylcholine (PC) membranes in real units, including properties such as area per lipid, area compressibility, bending modulus, line tension, phase transition temperature, density profile, and radial distribution function.

View Article and Find Full Text PDF

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-μm diameter limit for 3D migration through gaps in the extracellular matrix.

View Article and Find Full Text PDF

Biomolecular research traditionally revolves around comprehending the mechanisms through which peptides or proteins facilitate specific functions, often driven by their relevance to clinical ailments. This conventional approach assumes that unraveling mechanisms is a prerequisite for wielding control over functionality, which stands as the ultimate research goal. However, an alternative perspective emerges from physics-based inverse design, shifting the focus from mechanisms to the direct acquisition of functional control strategies.

View Article and Find Full Text PDF

Motivation: Many membrane peripheral proteins have evolved to transiently interact with the surface of (curved) lipid bilayers. Currently, methods to quantitatively predict sensing and binding free energies for protein sequences or structures are lacking, and such tools could greatly benefit the discovery of membrane-interacting motifs, as well as their de novo design.

Results: Here, we trained a transformer neural network model on molecular dynamics data for >50 000 peptides that is able to accurately predict the (relative) membrane-binding free energy for any given amino acid sequence.

View Article and Find Full Text PDF

The membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases.

View Article and Find Full Text PDF

Coarse-grained force fields (CG FFs) such as the Martini model entail a predefined, fixed set of Lennard-Jones parameters (building blocks) to model virtually all possible nonbonded interactions between chemically relevant molecules. Owing to its universality and transferability, the building-block coarse-grained approach has gained tremendous popularity over the past decade. The parametrization of molecules can be highly complex and often involves the selection and fine-tuning of a large number of parameters (e.

View Article and Find Full Text PDF

Graphene oxide (GO) has proved itself as a nanomaterial capable of acting as a surfactant by lowering the interfacial tension of the oil-water interface due to its polar oxygen groups. However, the surfactant behavior of the pure graphene sheet─since prevention of edge oxidation in experimental setups is nontrivial─is still an unresolved issue in graphene research despite significant progress in the field in recent years. Here, we conduct both atomistic and coarse-grained simulations to demonstrate that─surprisingly─even pristine graphene, which only consists of hydrophobic carbon atoms, is attracted to the octanol-water interface and consequently reduces its surface tension by 2.

View Article and Find Full Text PDF

The self-assembly of peptides into supramolecular structures has been linked to neurodegenerative diseases but has also been observed in functional roles. Peptides are physiologically exposed to crowded environments of biomacromolecules, and particularly cellular membrane lipids. Previous research has shown that membranes can both accelerate and inhibit peptide self-assembly.

View Article and Find Full Text PDF

Proteins can specifically bind to curved membranes through curvature-induced hydrophobic lipid packing defects. The chemical diversity among such curvature "sensors" challenges our understanding of how they differ from general membrane "binders" that bind without curvature selectivity. Here, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations (Evo-MD) to resolve the peptide sequences that optimally recognize the curvature of lipid membranes.

View Article and Find Full Text PDF

Coiled-coil peptides are high-affinity, selective, self-assembling binding motifs, making them attractive components for the preparation of functional biomaterials. Photocontrol of coiled-coil self-assembly allows for the precise localization of their activity. To rationally explore photoactivity in a model coiled coil, three azobenzene-containing amino acids were prepared and substituted into the hydrophobic core of the E/K coiled-coil heterodimer.

View Article and Find Full Text PDF

Nanostructured surfaces are widespread in nature and are being further developed in materials science. This makes them highly relevant for biomolecules, such as peptides. In this data article, we present a curvature model and molecular dynamics (MD) simulation data on the influence of nanoparticle size on the stability of amyloid peptide fibrils related to our research article entitled "Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation" (John et al.

View Article and Find Full Text PDF

The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix.

View Article and Find Full Text PDF
Article Synopsis
  • Proteins can detect irregularities in lipid bilayers, like curves or stretches, due to hydrophobic defects, and this study introduces a new method to calculate the free energy associated with this process in molecular dynamics simulations.
  • The ability of peptides to create tension and soften membranes, known as "characteristic area of sensing" (CHAOS), is linked to their ability to sense lipid packing defects.
  • The new mechanical method proposed is 40 times more efficient than traditional techniques, allowing for better comparisons between different molecular models, and it opens up possibilities for designing peptides that effectively sense lipid packing defects with potential biomedical applications.
View Article and Find Full Text PDF

The aggregation of peptides into amyloid fibrils has been linked to ageing-related diseases, such as Alzheimer's and type 2 diabetes. Interfaces, particularly those with large nanostructured surfaces, can affect the kinetics of peptide aggregation, which ranges from complete inhibition to strong acceleration. While a number of physiochemical parameters determine interfacial effects, we focus here on the role of nanoparticle (NP) size and curvature.

View Article and Find Full Text PDF

Membrane curvature plays an essential role in the organization and trafficking of membrane associated proteins. Comparison or prediction of the experimentally resolved protein concentrations adopted at different membrane curvatures requires direct quantification of the relative partitioning free energy. Here, we present a highly efficient and simple to implement a free-energy calculation method which is able to directly resolve the relative partitioning free energy of proteins as a direct function of membrane curvature, i.

View Article and Find Full Text PDF

Highly curved toroidal micelles with diameters as small as 100 nm have been successfully constructed by self-assembly of amphiphilic block copolymers. These structures may have potential applications in gene or drug delivery. Experimental observations suggest that toroidal micelles likely originate from spherical or disc-like micelles which are tricked into forming toroidal micelles upon external stimuli ('smart' materials).

View Article and Find Full Text PDF

Thermodynamic integration is one of the most established methods to quantify excess free energies between different metastable states. Excess intermolecular interactions in surfactant assemblies are on the scale of the energy of thermal fluctuations. Therefore, these materials can be deformed and topologically altered via relatively small mechanical stresses.

View Article and Find Full Text PDF

Physiological membrane vesicles are built to separate reaction spaces in a stable manner, even when they accidentally collide or are kept in apposition by spatial constraints in the cell. This requires a natural resistance to fusion and mixing of their content, which originates from substantial energetic barriers to membrane fusion [1]. To facilitate intracellular membrane fusion reactions in a controlled manner, proteinaceous fusion machineries have evolved.

View Article and Find Full Text PDF

The islet amyloid polypeptide (IAPP) is a regulatory peptide that can aggregate into fibrillar structures associated with type 2 diabetes. In this study, the IAPP segment was modified with a biotin linker at the N-terminus (Btn-GNNFGAIL) to immobilize peptide fibrils on streptavidin-coated surfaces. Key residues for fibril formation of the N-terminal biotinylated IAPP segment were identified by using an alanine scanning approach combined with molecular dynamics simulations, thioflavin T fluorescence measurements, and scanning electron microscopy.

View Article and Find Full Text PDF

Biological membrane fusion proceeds via an essential topological transition of the two membranes involved. Known players such as certain lipid species and fusion proteins are generally believed to alter the free energy and thus the rate of the fusion reaction. Quantifying these effects by theory poses a major challenge since the essential reaction intermediates are collective, diffusive and of a molecular length scale.

View Article and Find Full Text PDF

Society is increasingly exposed to nanoparticles as they are ubiquitous in nature and introduced as man-made air pollutants and as functional ingredients in cosmetic products as well as in nanomedicine. Nanoparticles differ in size, shape and material properties. In addition to their intended function, the side effects on biochemical processes in organisms remain unclear.

View Article and Find Full Text PDF

Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore.

View Article and Find Full Text PDF

Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionelrd2eb0v8v8f40oaebhu9n108gmbi83): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once