Publications by authors named "Herr W"

TATA box recognition by TATA-binding protein (TBP) is a key step in transcriptional initiation complex assembly on TATA-box-containing RNA polymerase (Pol) II and III promoters. This process is inhibited by the inhibitory DNA-binding (IDB) surface on the human TBP core domain (TBP(CORE)) and is stimulated by promoter-specific basal transcription factors, such as two human TFIIB family members, the Pol II factor TFIIB and the Pol III factor Brf2, which is required for transcription from TATA-box-containing Pol III promoters. In contrast, the third TFIIB family member, Brf1, which is required for transcription from TATA-less Pol III promoters, does not stimulate TBP binding to the TATA box.

View Article and Find Full Text PDF

When herpes simplex virus (HSV) infects human cells, it is able to enter two modes of infection: lytic and latent. A key activator of lytic infection is a virion protein called VP16, which, upon infection of a permissive cell, forms a transcriptional regulatory complex with two cellular proteins - the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1 - to activate transcription of the first set of expressed viral genes. This regulatory complex, called the VP16-induced complex, reveals mechanisms of combinatorial control of transcription.

View Article and Find Full Text PDF

HCF-1 is a highly conserved and abundant chromatin-associated host cell factor required for transcriptional activation of herpes simplex virus immediate-early genes by the virion protein VP16. HCF-1 exists as a heterodimeric complex of associated N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits that result from proteolytic processing of a precursor protein. We have used small-interfering RNA (siRNA) to inactivate HCF-1 in an array of normal and transformed mammalian cells to identify its cellular functions.

View Article and Find Full Text PDF

The abundant and chromatin-associated protein HCF-1 is a critical player in mammalian cell proliferation as well as herpes simplex virus (HSV) transcription. We show here that separate regions of HCF-1 critical for its role in cell proliferation associate with the Sin3 histone deacetylase (HDAC) and a previously uncharacterized human trithorax-related Set1/Ash2 histone methyltransferase (HMT). The Set1/Ash2 HMT methylates histone H3 at Lys 4 (K4), but not if the neighboring K9 residue is already methylated.

View Article and Find Full Text PDF

The TATA box binding protein TBP is highly conserved and the only known basal factor that is involved in transcription by all three eukaryotic nuclear RNA polymerases from promoters with or without a TATA box. By mutagenesis and analysis on a selected set of four model pol II and pol III TATA box-containing and TATA-less promoters, we demonstrate that human TBP utilizes two modes to achieve its versatile functions. First, it uses a different set of surfaces on the conserved and structured TBP core domain to direct transcription from each of the four model promoters.

View Article and Find Full Text PDF

Owing to a single missense mutation in the cell proliferation factor HCF-1, the temperature-sensitive tsBN67 hamster cell line arrests proliferation at nonpermissive temperatures, primarily in a G(0)/G(1) state, and displays temperature-sensitive cytokinesis defects. The HCF-1 mutation in tsBN67 cells also causes a temperature-sensitive dissociation of HCF-1 from chromatin prior to cell proliferation arrest, suggesting that HCF-1-chromatin association is important for mammalian-cell proliferation. Here, we report that the simian virus 40 (SV40) early region, in particular, large T antigen (Tag), and the adenovirus oncoprotein E1A can rescue the tsBN67 cell proliferation defect at nonpermissive temperatures.

View Article and Find Full Text PDF

Mutations and aberrant expression of the p53 tumor suppressor protein are the most frequent molecular alterations in human malignancy. Peptides derived from the wild-type (wt) p53 protein and presented by major histocompatibility complex (MHC) molecules for T lymphocyte recognition are believed to serve as universal tumor-associated antigens for cancer immunotherapy. We studied the immunogeneicity of a recombinant replication-defective adenoviral vector encoding human full-length wt p53 (rAd/hup53) in human leukocyte antigen (HLA)-A2K(b)-transgenic (Tg) mice and man.

View Article and Find Full Text PDF

Mammalian HCF-1 is a highly conserved and abundant chromatin-bound protein that plays a role in both herpes simplex virus (HSV) immediate-early (IE) gene transcription and cell proliferation. Its role in cell proliferation has been evidenced through the analysis of a temperature-sensitive hamster cell line called tsBN67. When placed at nonpermissive temperature, tsBN67 cells undergo a stable and reversible proliferation arrest after a lag of 36-48 h.

View Article and Find Full Text PDF

The TATA box binding protein TBP plays a universally important role in eukaryotic nuclear transcription. By mutagenesis, we have discovered a solvent-exposed surface of the structured TBP core domain that is important for inhibition of the DNA binding and DNA-bending activities of full-length wild-type TBP. Full-length wild-type TBP initially binds the TATA box to form an unstable complex containing unbent DNA, and then it slowly forms a stable complex containing bent DNA.

View Article and Find Full Text PDF

ELISPOT assays are increasingly used for a direct detection and quantification of single antigen-specific T cells in freshly isolated peripheral blood mononuclear cells (PBMC). They are particularly attractive for the monitoring of specific T lymphocyte responses in clinical trials assessing antigen-specific immunizations in patients with cancer or chronic viral infections. However, one major limitation for the broad clinical implementation of ELISPOT assays is the lack of an inexhaustible source of suitable HLA-matched antigen-presenting cells (APC).

View Article and Find Full Text PDF

The human herpes simplex virus (HSV) protein VP16 induces formation of a transcriptional regulatory complex with two cellular factors-the POU homeodomain transcription factor Oct-1 and the cell proliferation factor HCF-1-to activate viral immediate-early-gene transcription. Although the cellular role of Oct-1 in transcription is relatively well understood, the cellular role of HCF-1 in cell proliferation is enigmatic. HCF-1 and the related protein HCF-2 form an HCF protein family in humans that is related to a Caenorhabditis elegans homolog called CeHCF.

View Article and Find Full Text PDF

Upon infection, the herpes simplex virus (HSV) transcriptional activator VP16 directs the formation of a multiprotein-DNA complex-the VP16-induced complex-with two cellular proteins, the host cell factor HCF-1 and the POU domain transcription factor Oct-1, on TAATGARAT-containing sequences found in the promoters of HSV immediate-early genes. HSV VP16 contains carboxy-terminal sequences important for transcriptional activation and a central conserved core that is important for VP16-induced complex assembly. On its own, VP16 displays little, if any, sequence-specific DNA-binding activity.

View Article and Find Full Text PDF

HCF-1 is a mammalian protein required for cell proliferation. It is also involved in transcriptional activation of herpes-simplex-virus immediate-early gene transcription in association with the viral transactivator VP16. HCF-1 and a related protein called HCF-2 possess a homologue in Caenorhabditis elegans that can associate with and activate VP16.

View Article and Find Full Text PDF

Human HCF-1 is a large, highly conserved, and abundant nuclear protein that plays an important but unknown role in cell proliferation. It also plays a role in activation of herpes simplex virus immediate-early gene transcription by the viral regulatory protein VP16. A single proline-to-serine substitution in the HCF-1 VP16 interaction domain causes a temperature-induced arrest of cell proliferation in hamster tsBN67 cells and prevents transcriptional activation by VP16.

View Article and Find Full Text PDF

The melanosomal protein tyrosinase is considered as a target of specific immunotherapy against melanoma. Two tyrosinase-derived peptides are presented in association with HLA-A2.1 [Wölfel et al.

View Article and Find Full Text PDF

The ELISPOT assay is increasingly being used for the monitoring of the induction of antigen-reactive T cells in cancer vaccination trials. In order to evaluate the reliability of T cell frequency analysis with the ELISPOT assay, a comparative study was performed in four European laboratories. Six samples from healthy subjects were analyzed for the frequency of influenza-reactive CD8+ T cells in peripheral blood mononuclear cells (PBMC) by IFNgamma-ELISPOT assay.

View Article and Find Full Text PDF

Immunotherapy trials targeting the induction of tumor-reactive T-cell responses in cancer patients appear to hold significant promise. Because nonmutated lineage-specific antigens and mutated idiotypic antigens may be coexpressed by tumor cells, the use of autologous tumor material to promote the broadest range of antitumor T-cell specificities has significant clinical potential in cancer vaccination trials. As a model for vaccination in the cancer setting, we chose to analyze the promotion of T-cell responses against Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell line (B-LCL)-derived antigens in vitro.

View Article and Find Full Text PDF

When herpes simplex virus infects permissive cells, the viral regulatory protein VP16 forms a specific complex with HCF-1, a preexisting nuclear protein involved in cell proliferation. The majority of HCF-1 in the cell is a complex of associated amino (HCF-1(N))- and carboxy (HCF-1(C))-terminal subunits that result from an unusual proteolytic processing of a large precursor polypeptide. Here, we have characterized the structure and function of sequences required for HCF-1(N) and HCF-1(C) subunit association.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that can be used for vaccination purposes, to induce a specific T-cell response in vivo against melanoma-associated antigens. We have shown that the sequential use of early-acting hematopoietic growth factors, stem cell factor, IL-3 and IL-6, followed by differentiation with IL-4 and granulocyte-macrophage colony-stimulating factor allows the in vitro generation of large numbers of immature DCs from CD34(+) peripheral blood progenitor cells. Maturation to interdigitating DCs could specifically be induced within 24 hr by addition of TNF-alpha.

View Article and Find Full Text PDF

The human Melan-A/MART-1 gene encodes an HLA-A2-restricted peptide epitope recognized by melanoma-reactive CD8(+) cytotoxic T lymphocytes. Here we report that this gene also encodes at least one HLA-DR4-presented peptide recognized by CD4(+) T cells. The Melan-A/MART-1(51-73) peptide was able to induce the in vitro expansion of specific CD4(+) T cells derived from normal DR4(+) donors or from DR4(+) patients with melanoma when pulsed onto autologous dendritic cells.

View Article and Find Full Text PDF

Antigenic peptides have been found associated with heat shock proteins (HSP) including cytoplasmic HSP70 and heat shock cognate protein 70 as well as the endoplasmic reticulum-resident glucose-regulated protein 94. Recently, HSP70 transfection has been reported to increase MHC class I cell surface expression and antigen presentation on mouse melanoma B16 cells (Wells et al., Int.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a herpesvirus commonly associated with several malignancies, particularly in immunocompromised hosts. As a strategy for stimulating immunity against EBV for the treatment of EBV-associated tumors, we have genetically engineered dendritic cells (DC) to express EBV antigens, such as latent membrane protein 2B (LMP2B), using recombinant adenovirus vectors. CD8(+) T lymphocytes from HLA-A2.

View Article and Find Full Text PDF

The broad clinical implementation of cancer vaccines targeting the induction of specific T cell-mediated immunity is hampered because T cell defined tumor-associated peptides are currently available for only a restricted range of tumor types. Current epitope identification strategies require a priori the generation of T "indicator" cell lines that specifically recognize the tumor antigenic epitope in in vitro assay systems. An alternative to this strategy is the use of "memory" T cells freshly isolated from the peripheral blood of patients with cancer in concert with sensitive effector cell readout assays (such as the cytokine enzyme-linked immunospot assay) and MS to identify relevant peptide epitopes.

View Article and Find Full Text PDF

On infection, the herpes simplex virus (HSV) virion protein VP16 (Vmw65; alphaTIF) forms a transcriptional regulatory complex-the VP16-induced complex-with two cellular proteins, HCF and Oct-1, on VP16-responsive cis-regulatory elements in HSV immediate-early promoters called TAATGARAT. Comparison of different HSV VP16 sequences reveals a conserved core region that is sufficient for VP16-induced complex formation. The crystal structure of the VP16 core has been determined at 2.

View Article and Find Full Text PDF