Publications by authors named "Heros P"

Caveolae-associated signaling toward mitochondria contributes to the cardioprotective mechanisms against ischemia-reperfusion (I/R) injury induced by ischemic postconditioning. In this work, we evaluated the role that the actin-cytoskeleton network exerts on caveolae-mitochondria communication during postconditioning. Isolated rat hearts subjected to I/R and to postconditioning were treated with latrunculin A, a cytoskeleton disruptor.

View Article and Find Full Text PDF

The role of Cl as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl Cotransporters (CCCs) cascade. Binding of a Cl anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition.

View Article and Find Full Text PDF

The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. The functional and structural characterization of NCC from different species has led us to gain insights into the structure-function relationships of the cotransporter. Here we present an overview of different studies that had described these properties.

View Article and Find Full Text PDF

Ion Transport across the cell membrane is required to maintain cell volume homeostasis. In response to changes in extracellular osmolarity, most cells activate specific metabolic or membrane-transport pathways to respond to cell swelling or shrinkage and return their volume to its normal resting state. This process involves the rapid adjustment of the activities of channels and transporters that mediate flux of K, Na, Cl, and small organic osmolytes.

View Article and Find Full Text PDF

Endomorphins (EMs) have been proposed as the endogenous ligand agonists of the μ-opioid receptor; however, no propeptide precursor protein for EMs has been identified. Here, to identify the presumed precursor of EMs, we designed an immunoscreening assay using specific affinity-purified rabbit antisera raised against synthetic EMs in a whole-mouse brain cDNA library. Following this approach, we identify a DNA sequence encoding a protein precursor, which we name proMexneurin, that contains three different peptide sequences: Mexneurin-1 (an EM-like peptide), Mexneurin-2, and Mexneurin-3, a peptide which appears to be unrelated to EMs.

View Article and Find Full Text PDF

Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr/Thr phosphorylation - a key signaling event in cell swelling-induced regulatory volume decrease (RVD).

View Article and Find Full Text PDF
Article Synopsis
  • The KCC cotransporters help move potassium and chloride ions out of cells to keep things balanced inside them.
  • L-WNK1 is a protein that can change how these transporters work and is linked to certain diseases.
  • When L-WNK1 is present, it stops KCCs from working well when cells swell, but it makes another transporter called NKCC1 work better instead.
View Article and Find Full Text PDF

Unique situations in female physiology require volume retention. Accordingly, a dimorphic regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) has been reported, with a higher activity in females than in males. However, little is known about the hormones and mechanisms involved.

View Article and Find Full Text PDF

Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro.

View Article and Find Full Text PDF

The K(+):Cl(-) cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation.

View Article and Find Full Text PDF

The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1.

View Article and Find Full Text PDF

Mouse protein-25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling development and morphogenesis.

View Article and Find Full Text PDF

Ion cotransporters, such as the Na(+)/Cl(-) cotransporter (NCC), control renal salt re-absorption and are regulated by the WNK-signalling pathway, which is over-stimulated in patients suffering from Gordon's hypertension syndrome. Here, we study the regulation of the NKCC2 (SLC12A1) ion cotransporter that contributes towards ~25% of renal salt re-absorption and is inhibited by loop-diuretic hypertensive drugs. We demonstrate that hypotonic low-chloride conditions that activate the WNK1-SPAK and OSR1 pathway promote phosphorylation of NKCC2 isoforms (A, B and F) at five residues (Ser91, Thr95, Thr100, Thr105 and Ser130).

View Article and Find Full Text PDF

The Na(+):K(+):2Cl(-) cotransporter (NKCC2) is the target of loop diuretics and is mutated in Bartter's syndrome, a heterogeneous autosomal recessive disease that impairs salt reabsorption in the kidney's thick ascending limb (TAL). Despite the importance of this cation/chloride cotransporter (CCC), the mechanisms that underlie its regulation are largely unknown. Here, we show that intracellular chloride depletion in Xenopus laevis oocytes, achieved by either coexpression of the K-Cl cotransporter KCC2 or low-chloride hypotonic stress, activates NKCC2 by promoting the phosphorylation of three highly conserved threonines (96, 101, and 111) in the amino terminus.

View Article and Find Full Text PDF

Two members of a recently discovered family of protein kinases are the cause of an inherited disease known as pseudohypoaldosteronism type II (PHAII). These patients exhibit arterial hypertension together with hyperkalemia and metabolic acidosis. This is a mirror image of Gitelman disease that is due to inactivating mutations of the SLC12A3 gene that encodes the thiazide-sensitive Na(+):Cl(-) cotransporter.

View Article and Find Full Text PDF

SLC12A cation/Cl- cotransporters are mutated in human disease, are targets of diuretics, and are collectively involved in the regulation of cell volume, neuronal excitability, and blood pressure. This gene family has two major branches with different physiological functions and inverse regulation: K-Cl cotransporters (KCC1-KCC4) mediate cellular Cl- efflux, are inhibited by phosphorylation, and are activated by dephosphorylation; Na-(K)-Cl cotransporters (NCC and NKCC1/2) mediate cellular Cl- influx and are activated by phosphorylation. A single kinase/phosphatase pathway is thought to coordinate the activities of these cotransporters in a given cell; however, the mechanisms involved are as yet unknown.

View Article and Find Full Text PDF

WNK1 and WNK4 [WNK, with no lysine (K)] are serine-threonine kinases that function as molecular switches, eliciting coordinated effects on diverse ion transport pathways to maintain homeostasis during physiological perturbation. Gain-of-function mutations in either of these genes cause an inherited syndrome featuring hypertension and hyperkalemia due to increased renal NaCl reabsorption and decreased K(+) secretion. Here, we reveal unique biochemical and functional properties of WNK3, a related member of the WNK kinase family.

View Article and Find Full Text PDF

The regulation of Cl(-) transport into and out of cells plays a critical role in the maintenance of intracellular volume and the excitability of GABA responsive neurons. The molecular determinants of these seemingly diverse processes are related ion cotransporters: Cl(-) influx is mediated by the Na-K-2Cl cotransporter NKCC1 and Cl(-) efflux via K-Cl cotransporters, KCC1 or KCC2. A Cl(-)/volume-sensitive kinase has been proposed to coordinately regulate these activities via altered phosphorylation of the transporters; phosphorylation activates NKCC1 while inhibiting KCCs, and dephosphorylation has the opposite effects.

View Article and Find Full Text PDF

The mammalian kidney bumetanide-sensitive Na(+)-K(+)-2Cl(-) and thiazide-sensitive Na(+)-Cl(-) cotransporters are the major pathways for salt reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively. These cotransporters serve as receptors for the loop- and thiazide-type diuretics, and inactivating mutations of corresponding genes are associated with development of Bartter's syndrome type I and Gitleman's disease, respectively. Structural requirements for ion translocation and diuretic binding specificity are unknown.

View Article and Find Full Text PDF

Most of the missense mutations that have been described in the human SLC12A3 gene encoding the thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC, NCC, or NCCT), as the cause of Gitelman disease, block TSC function by interfering with normal protein processing and glycosylation. However, some mutations exhibit considerable activity. To investigate the pathogenesis of Gitelman disease mediated by such mutations and to gain insights into structure-function relationships on the cotransporter, five functional disease mutations were introduced into mouse TSC cDNA, and their expression was determined in Xenopus laevis oocytes.

View Article and Find Full Text PDF

The thiazide-sensitive Na+:Cl- cotransporter is the major salt transport pathway in the distal convoluted tubule of the kidney, and a role of this cotransporter in blood pressure homeostasis has been defined by physiological studies on pressure natriuresis and by its involvement in monogenic diseases that feature arterial hypotension or hypertension. Data base analysis revealed that 135 single nucleotide polymorphisms along the human SLC12A3 gene that encodes the Na+:Cl- cotransporter have been reported. Eight are located within the coding region, and one results in a single amino acid change; the residue glycine at the position 264 is changed to alanine (G264A).

View Article and Find Full Text PDF

The K-Cl cotransporters (KCCs) have a broad range of physiological roles, in a number of cells and species. We report here that Xenopus laevis oocytes express a K-Cl cotransporter with significant functional and molecular similarity to mammalian KCCs. Under isotonic conditions, defolliculated oocytes exhibit a Cl(-)-dependent (86)Rb(+) uptake mechanism after activation by the cysteine-reactive compounds N-ethylmaleimide (NEM) and mercuric chloride (HgCl(2)).

View Article and Find Full Text PDF