Publications by authors named "Hernandez-Arciga U"

Aging is a complex and detrimental process, which disrupts most organs and systems within the organisms. The nervous system is morphologically and functionally affected during normal aging, and oxidative stress has been involved in age-related damage, leading to cognitive decline and neurodegenerative processes. Sulforaphane (SFN) is a hormetin that activates the antioxidant and anti-inflammatory responses.

View Article and Find Full Text PDF

The brain is one of the most sensitive organs damaged during aging due to its susceptibility to the aging-related oxidative stress. Hence, in this study, the sensory nerve pathway integrity and the memory were evaluated and related to the redox state, the antioxidant enzymes function, and the protein oxidative damage in the brain cortex (Cx) and the hippocampus (Hc) of young (4-month-old) and old (24-month-old) male and female Wistar rats. Evoked potentials (EP) were performed for the auditory, visual, and somatosensory pathways.

View Article and Find Full Text PDF

One of the most common tools in conservation physiology is the assessment of environmental stress via glucocorticoid measurement. However, little is known of its relationship with other stress-related biomarkers, and how the incidence of an immune challenge during long-term stress could affect an individual's overall stress response. We investigated here the relationship between basal and post-acute stress fecal cortisol metabolite (FC) with different antioxidant enzymes, oxidative damage and immune parameters in the fish-eating bat, We found that in both basal and post-stress conditions, FC was highly related with a number of antioxidant enzymes and immune parameters, but not to oxidative damage.

View Article and Find Full Text PDF

Oxidative stress is known to be involved in the etiology of sarcopenia, a progressive loss of muscle mass and force related to elderly incapacity. A successful intervention to prevent this condition has been exercise-based therapy. Metformin (MTF), an anti-diabetic drug with pleiotropic effects, is known to retain redox homeostasis.

View Article and Find Full Text PDF

Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season.

View Article and Find Full Text PDF

Synapses loss during aging has been related to decreased neuronal excitability and reduced electrophysiological activity in the nervous system, as well as to increased brain damage. Those physiological and biochemical alterations have been related to the oxidative stress increase associated with old age. The main substrate of lipid peroxidation (LPX) in the central and peripheral nervous systems are the myelin sheaths, and their damage generates a delayed nerve conduction velocity.

View Article and Find Full Text PDF

Background: Synapses loss during aging is associated to neurophysiologic alterations that impair organism's health span, thus making the study and prevention of sensory decline relevant for healthy aging and welfare. Therefore the aim of this study was to obtain normative data related to the electrophysiological responses of the different neurosensory components in the visual, auditory and somatosensory pathways in healthy geriatric rhesus monkeys in captivity.

Methods: Twenty-four rhesus monkeys were divided in two groups: (i) Geriatric monkeys, 20-30 years of age, and (ii) Young monkeys, 7 years of age.

View Article and Find Full Text PDF