Publications by authors named "Hernan Lopez-Schier"

Article Synopsis
  • Mutations in the gene responsible for branchio-oto-renal syndrome (BOR) cause multi-organ malformations in humans and similar effects in animal models.
  • Researchers studied the zebrafish posterior lateral-line primordium to investigate the role of the Eya1 gene in organ development.
  • Their findings revealed that the loss of Eya1 reduces specific chemokine receptor expression, disrupting cell movement and leading to abnormal formation of the lateral line, which suggests that issues with cell movement contribute to organ malformations in BOR.
View Article and Find Full Text PDF

Accidental wounding of the peripheral nervous system leads to acute neural dysfunction. Normally, chronic deficits are overcome because peripheral nerves naturally regenerate. However, various genetic and metabolic defects can impair their natural regenerative capacity, which may be due to neuron-extrinsic mechanisms.

View Article and Find Full Text PDF

Collective cell rotations are widely used during animal organogenesis. Theoretical and in vitro studies have conceptualized rotating cells as identical rigid-point objects that stochastically break symmetry to move monotonously and perpetually within an inert environment. However, it is unclear whether this notion can be extrapolated to a natural context, where rotations are ephemeral and heterogeneous cellular cohorts interact with an active epithelium.

View Article and Find Full Text PDF

We present a protocol to characterize the morphological properties of individual neurons reconstructed from microscopic imaging. We first describe a simple procedure to extract relevant morphological features from digital tracings of neural arbors. Then, we provide detailed steps on classification, clustering, and statistical analysis of the traced cells based on morphological features.

View Article and Find Full Text PDF

Despite its importance in regulating cellular or tissue function, electrical conductivity can only be visualized in tissue indirectly as voltage potentials using fluorescent techniques, or directly with radio waves. These either requires invasive procedures like genetic modification or suffers from limited resolution. Here, we introduce radio-frequency thermoacoustic mesoscopy (RThAM) for the noninvasive imaging of conductivity by exploiting the direct absorption of near-field ultrashort radio-frequency pulses to stimulate the emission of broadband ultrasound waves.

View Article and Find Full Text PDF

Sarm1 is an evolutionary conserved protein that is essential for Wallerian axon degeneration. Sarm1 has emerged as a therapeutic target to treat neuropathies derived from metabolic or chemical stress and physical injury of axons. Yet, the full repertoire of consequences of inhibiting Sarm1 remains unknown.

View Article and Find Full Text PDF

Animals have a remarkable ability to use local cues to orient in space in the absence of a panoramic fixed reference frame. Here we use the mechanosensory lateral line in larval zebrafish to understand rheotaxis, an innate oriented swimming evoked by water currents. We generated a comprehensive light-microscopy cell-resolution projectome of lateralis afferent neurons (LANs) and used clustering techniques for morphological classification.

View Article and Find Full Text PDF

Early-life experience has a long-lasting influence on social behaviour. A new study has revealed a role for mechanosensation in shaping social avoidance responses in zebrafish.

View Article and Find Full Text PDF

Most plane-polarized tissues are formed by identically oriented cells [1, 2]. A notable exception occurs in the vertebrate vestibular system and lateral-line neuromasts, where mechanosensory hair cells orient along a single axis but in opposite directions to generate bipolar epithelia [3-5]. In zebrafish neuromasts, pairs of hair cells arise from the division of a non-sensory progenitor [6, 7] and acquire opposing planar polarity via the asymmetric expression of the polarity-determinant transcription factor Emx2 [8-11].

View Article and Find Full Text PDF

The extracellular matrix is known to modulate cell adhesion and migration during tissue regeneration. However, the molecular mechanisms that fine-tune cells to extra-cellular matrix dynamics during regeneration of the peripheral nervous system remain poorly understood. Using the RSC96 Schwann cell line, we show that Sox2 directly controls fibronectin fibrillogenesis in Schwann cells in culture, to provide a highly oriented fibronectin matrix, which supports their organization and directional migration.

View Article and Find Full Text PDF

Protecting the nervous system from chronic effects of physical and chemical stress is a pressing clinical challenge. The obligate pro-degenerative protein Sarm1 is essential for Wallerian axon degeneration. Thus, blocking Sarm1 function is emerging as a promising neuroprotective strategy with therapeutic relevance.

View Article and Find Full Text PDF

Optoacoustic image formation is conventionally based upon ultrasound time-of-flight readings from multiple detection positions. Herein, we exploit acoustic scattering to physically encode the position of optical absorbers in the acquired signals, thus reducing the amount of data required to reconstruct an image from a single waveform. This concept is experimentally tested by including a random distribution of scatterers between the sample and an ultrasound detector array.

View Article and Find Full Text PDF

Sensory systems convey environmental information to the brain. A comprehensive description of neuronal anatomy and connectivity is essential to understand how sensory information is acquired, transmitted, and processed. Here we describe a high-resolution live imaging technique to quantify the architecture of sensory neurons in larval zebrafish.

View Article and Find Full Text PDF

Learning is essential for animal survival under changing environments. Even in its simplest form, learning involves interactions between a handful of neuronal circuits, hundreds of neurons and many thousand synapses. In this review I will focus on habituation - a form of non-associative learning during which organisms decrease their response to repetitions of identical sensory stimuli.

View Article and Find Full Text PDF

Directional mechanoreception by hair cells is transmitted to the brain via afferent neurons to enable postural control and rheotaxis. Neuronal tuning to individual directions of mechanical flow occurs when each peripheral axon selectively synapses with multiple hair cells of identical planar polarization. How such mechanosensory labeled lines are established and maintained remains unsolved.

View Article and Find Full Text PDF

Despite the intrinsically stochastic nature of damage, sensory organs recapitulate normal architecture during repair to maintain function. Here we present a quantitative approach that combines live cell-lineage tracing and multifactorial classification by machine learning to reveal how cell identity and localization are coordinated during organ regeneration. We use the superficial neuromasts in larval zebrafish, which contain three cell classes organized in radial symmetry and a single planar-polarity axis.

View Article and Find Full Text PDF
Article Synopsis
  • A small number of vertebrates have the ability to detect weak electric fields in their environment.
  • Two recent studies provide insights into how the organs responsible for this electroreception develop and function.
  • Understanding these mechanisms can enhance our knowledge of sensory biology in these unique animals.
View Article and Find Full Text PDF

Optical microscopy remains a fundamental tool for modern biological discovery owing to its excellent spatial resolution and versatile contrast in visualizing cellular and sub-cellular structures. Yet, the time domain is paramount for the observation of biological dynamics in living systems. Commonly, acquisition of microscopy data involves scanning of a spherically- or cylindrically-focused light beam across the imaged volume, which significantly limits temporal resolution in 3D.

View Article and Find Full Text PDF

Whole-body optical imaging of post-embryonic stage model organisms is a challenging and long sought-after goal. It requires a combination of high-resolution performance and high-penetration depth. Optoacoustic (photoacoustic) mesoscopy holds great promise, as it penetrates deeper than optical and optoacoustic microscopy while providing high-spatial resolution.

View Article and Find Full Text PDF

Heterogeneous and unpredictable environmental insult, disease, or trauma can affect the integrity and function of neuronal circuits, leading to irreversible neural dysfunction. The peripheral nervous system can robustly regenerate axons after damage to recover the capacity to transmit sensory information to the brain. The mechanisms that allow axonal repair remain incompletely understood.

View Article and Find Full Text PDF

Environmental insult, disease or trauma can affect the physical integrity of neuronal circuits, and the inability of many neurons to regenerate injured axons invariably leads to irreversible neural dysfunction. The conserved second messenger cyclic adenosine monophosphate (cAMP) can promote axonal re-growth. Widely used pharmacological or genetic approaches to increase intracellular levels of cAMP are often inadequate for precise neural-circuit reconstruction because their activity cannot be easily timed to specific target cells.

View Article and Find Full Text PDF

Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma.

View Article and Find Full Text PDF

Animals have evolved two general strategies to counter injury and maintain physiological function. The most prevalent is protection by isolating vital organs into body cavities. However, protection is not optimal for sensory systems because their external components need to be exposed to the environment to fulfill their receptive function.

View Article and Find Full Text PDF