AbstractPhenotypic macroevolutionary studies provide insight into how ecological processes shape biodiversity. However, the complexity of phenotype-ecology relationships underscores the importance of also validating phenotype-based ecological inference with direct evidence of resource use. Unfortunately, macroevolutionary-scale ecological studies are often hindered by the challenges of acquiring taxonomically and spatially representative ecological data for large and widely distributed clades.
View Article and Find Full Text PDFAbstractMuseum specimens have long served as foundational data sources for ecological, evolutionary, and environmental research. Continued reimagining of museum collections is now also generating new types of data associated with but beyond physical specimens, a concept known as "extended specimens." Field notes penned by generations of naturalists contain firsthand ecological observations associated with museum collections and comprise a form of extended specimens with the potential to provide novel ecological data spanning broad geographic and temporal scales.
View Article and Find Full Text PDFBiodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles.
View Article and Find Full Text PDFAbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation.
View Article and Find Full Text PDFThe diversification of functional traits may be limited by the intrinsic constraints of organismal form (i.e., constructional constraints), owing to the differential investment in different anatomical structures.
View Article and Find Full Text PDFComputed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol's have provided access to an array of morphological data sets spanning extant vertebrate lineages.
View Article and Find Full Text PDFAfrican cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation.
View Article and Find Full Text PDFNatural variation in the number, expression and function of sensory genes in an organism's genome is often tightly linked to different ecological and evolutionary forces. Opsin genes, which code for the first step in visual transduction, are ideal models for testing how ecological factors such as light environment may influence visual system adaptation. Neotropical cichlid fishes are a highly ecologically diverse group that evolved in a variety of aquatic habitats, including black (stained), white (opaque) and clear waters.
View Article and Find Full Text PDFThe 'Geophagus' brasiliensis complex is one of the most abundant groups of cichlids from eastern coastal basins in South America. Traditionally, this fish group has been recognized as incertae sedis because of phylogenetic uncertainties and unclear taxonomy. In addition, the remarkable morphological, chromosomal, and DNA variation reported over recent years in several populations of these cichlids has increased the debate about their species richness and their distributional range.
View Article and Find Full Text PDFEcomorphology is the study of relationships between organismal morphology and ecology. As such, it is the only way to determine if morphometric data can be used as an informative proxy for ecological variables of interest. To achieve this goal, ecomorphology often depends on, or directly tests, assumptions about the nature of the relationships among morphology, performance, and ecology.
View Article and Find Full Text PDFAnat Rec (Hoboken)
February 2018
The diversification of functional traits may be constrained by intrinsic factors, such as structural, mechanical, developmental, or physiological limitations. We explored the biomechanical and constructional constraints on the size of the major jaw closing muscles, the adductor mandibulae complex (AM), in a diverse clade of freshwater fish - the Neotropical cichlids. Using phylogenetic comparative methods, we contrasted patterns of size variation and diversification rates of three AM divisions with variables describing head size and biomechanical coefficients describing force and velocity transmission.
View Article and Find Full Text PDFThe phenotypic, geographic, and species diversity of cichlid fishes have made them a group of great interest for studying evolutionary processes. Here we present a targeted-exon next-generation sequencing approach for investigating the evolutionary relationships of cichlid fishes (Cichlidae), with focus on the Neotropical subfamily Cichlinae using a set of 923 primarily single-copy exons designed through mining of the Nile tilapia (Oreochromis niloticus) genome. Sequence capture and assembly were robust, leading to a complete dataset of 415 exons for 139 species (147 terminals) that consisted of 128 Neotropical species, six African taxa, and five Indo-Malagasy cichlids.
View Article and Find Full Text PDFCichlids encompass one of the most diverse groups of fishes in South and Central America, and show extensive variation in life history, morphology, and colouration. While studies of visual system evolution in cichlids have focussed largely on the African rift lake species flocks, Neotropical cichlids offer a unique opportunity to investigate visual system evolution at broader temporal and geographic scales. South American cichlid colonization of Central America has likely promoted accelerated rates of morphological evolution in Central American lineages as they encountered reduced competition, renewed ecological opportunity, and novel aquatic habitats.
View Article and Find Full Text PDFApproximately two-dozen species in three genera of the Neotropical suckermouth armored catfish family Loricariidae are the only described fishes known to specialize on diets consisting largely of wood. We conducted a molecular phylogenetic analysis of 10 described species and 14 undescribed species or morphotypes assigned to the wood-eating catfish genus Panaqolus, and four described species and three undescribed species or morphotypes assigned to the distantly related wood-eating catfish genus Panaque. Our analyses included individuals and species from both genera that are broadly distributed throughout tropical South America east of the Andes Mountains and 13 additional genera hypothesized to have also descended from the most recent common ancestor of Panaqolus and Panaque.
View Article and Find Full Text PDFAdaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification.
View Article and Find Full Text PDFBackground: Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use.
View Article and Find Full Text PDFThe phylogeny of piranhas, pacus, and relatives (family Serrasalmidae) was inferred on the basis of DNA sequences from eleven gene fragments that include the mitochondrial control region plus 10 nuclear genes (two exons and eight introns). The new data were obtained for a representative sampling of 53 specimens, collected from all major South American rivers, accounting for over 40% of the valid species and all genera excluding Utiaritichthys. Two fossil calibration points and relaxed-clock Bayesian analyses were used to estimate the timing of diversification.
View Article and Find Full Text PDFThe Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and ecomorphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reappraisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two mitochondrial and three nuclear loci (4293bp total).
View Article and Find Full Text PDFBody size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes.
View Article and Find Full Text PDFUnderstanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids.
View Article and Find Full Text PDFStudies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system.
View Article and Find Full Text PDFCichlid fishes (family Cichlidae) are models for evolutionary and ecological research. Massively parallel sequencing approaches have been successfully applied to study relatively recent diversification in groups of African and Neotropical cichlids, but such technologies have yet to be used for addressing larger-scale phylogenetic questions of cichlid evolution. Here, we describe a process for identifying putative single-copy exons from five African cichlid genomes and sequence the targeted exons for a range of divergent (>tens of millions of years) taxa with probes designed from a single reference species (Oreochromis niloticus, Nile tilapia).
View Article and Find Full Text PDFDiversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids.
View Article and Find Full Text PDF