Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences.
View Article and Find Full Text PDFSunlight exposure has multiple effect on fruits, as it affects the light climate perceived by fruit photoreceptors and fruit tissue temperature. In grapes (Vitis vinifera L.), light exposure can have a strong effect on fruit quality and commercial value; however, the mechanisms of light action are not well understood.
View Article and Find Full Text PDFPhytochrome B (phyB) can adjust morphological and physiological responses according to changes in the red:far-red (R:FR) ratio. phyB-driven acclimation of plants to open environments (high R:FR ratio) increases carbon gain at the expense of increased water loss. This behaviour alleviates stressful conditions generated by an excess of light, but increases the chances of desiccation.
View Article and Find Full Text PDFStresses resulting from high transpiration demand induce adjustments in plants that lead to reductions of water loss. These adjustments, including changes in water absorption, transport and/or loss by transpiration, are crucial to normal plant development. Tomato wild type (WT) and phytochrome A (phyA)-mutant plants, fri1-1, were exposed to conditions of either low or high transpiration demand and several morphological and physiological changes were measured during stress conditions.
View Article and Find Full Text PDF