Background: Pediatric high-grade gliomas (pHGGs) are aggressive pediatric CNS tumors and an important subset are characterized by mutations in , the gene that encodes Histone H3.3 (H3.3).
View Article and Find Full Text PDFBackground: Platelet-derived growth factor (PDGF) signaling, through the ligand PDGF-A and its receptor PDGFRA, is important for the growth and maintenance of oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). PDGFRA signaling is downregulated prior to OPC differentiation into mature myelinating oligodendrocytes. By contrast, PDGFRA is often genetically amplified or mutated in many types of gliomas, including diffuse midline glioma (DMG) where OPCs are considered the most likely cell-of-origin.
View Article and Find Full Text PDFBronchopulmonary dysplasia (BPD), a common complication of preterm birth, is associated with pulmonary hypertension (PH) in 25% of infants with moderate to severe BPD. Neonatal mice exposed to hyperoxia for 14d develop lung disease similar to BPD, with evidence of associated PH. The cyclic guanosine monophosphate (cGMP) signaling pathway has not been well studied in BPD-associated PH.
View Article and Find Full Text PDFTo investigate the impact of photoreceptor oxidative stress on photoreceptor degeneration in mice carrying the rd8 mutation (C57BL/6N). We compared the hyperoxia-induced proliferative retinopathy (HIPR) model in two mouse strains (C57BL/6J and C57BL/6N). Pups were exposed to 75% oxygen, starting at birth and continuing for 14 days (P14).
View Article and Find Full Text PDFBronchopulmonary dysplasia (BPD) is a major cause of neonatal morbidity in premature infants, occurring as a result of arrested lung development combined with multiple postnatal insults. Infants with BPD exposed to supplemental oxygen are at risk of retinopathy of prematurity as well. Thus, we studied the effects of hyperoxia on the retinal vasculature in a murine model of BPD.
View Article and Find Full Text PDFBackground: Exposure of neonatal mice to hyperoxia results in pulmonary vascular remodeling and aberrant phosphodiesterase type 5 (PDE5) signaling. Although glucocorticoids are frequently utilized in the NICU, little is known about their effects on the developing pulmonary vasculature and on PDE5. We sought to determine the effects of hydrocortisone (HC) on pulmonary vascular development and on PDE5 in a neonatal mouse model of hyperoxic lung injury.
View Article and Find Full Text PDF